{-# OPTIONS --safe #-}
module CtxArr2.Depth where

open import Function.Base using (id; _∘_)

open import Data.Nat.Base using (; suc; zero; _≥‴_; ≤‴-refl; ≤‴-step; _≤_; s≤s; z≤n; _⊔_)
import Data.Nat.Properties as 

open import CtxArr2.Context
open import CtxArr2.Term

private variable
  d d′ : 
  σ σ′ : Subst Γ Γ′

-- Depth of a context

depth : Context n  
depth  = zero
depth (Γ ,[ Δ  _ ^ _ ]) = depth Γ  suc (depth Δ)

-- Depth of a substitution

depthSubst : Subst Γ Γ′  
depthSubst  = zero
depthSubst {Γ = Γ ,[ Δ  A ^ m≥n ]} (σ , term e) = depthSubst σ  suc (depth Δ)
depthSubst (σ , var x) = depthSubst σ

-- Context/Substitution with depth upper bound
infix 4 _≤ᵈ_  _≤ᵈ′_

data _≤ᵈ_ {n} : Context n    Prop where
   :  ≤ᵈ d
  _,_ : Γ ≤ᵈ suc d  Δ ≤ᵈ d  Γ ,[ Δ  A ^ m≥n ] ≤ᵈ suc d

module _ {Γ′ Δ A} {m≥n : m ≥‴ n} where
  infix 4 _≤ᵈ″_
  data _≤ᵈ″_ : Γ′ ⊩[ Δ  A ^ m≥n ]    Prop where
    term :  {e}  Δ ≤ᵈ d  term e ≤ᵈ″ suc d
    var :  {x}  var x ≤ᵈ″ d

  untermᵈ :  {e}  term e ≤ᵈ″ suc d  Δ ≤ᵈ d
  untermᵈ (term e) = e

data _≤ᵈ′_ {Γ′ : Context n} : Subst Γ Γ′    Prop where
   :  ≤ᵈ′ d
  _,_ :  {item : Γ′ ⊩[ Δ  A ^ m≥n ]}  σ ≤ᵈ′ d  item ≤ᵈ″ d  σ , item ≤ᵈ′ d

≤ᵈ-≤-trans : Γ ≤ᵈ d  d  d′  Γ ≤ᵈ d′
≤ᵈ-≤-trans  z≤n = 
≤ᵈ-≤-trans  (s≤s d≤d′) = 
≤ᵈ-≤-trans (Γ≤ , Γ≤₁) (s≤s d≤d′) = ≤ᵈ-≤-trans Γ≤ (s≤s d≤d′) , ≤ᵈ-≤-trans Γ≤₁ d≤d′

≤ᵈ′-≤-trans : σ ≤ᵈ′ d  d  d′  σ ≤ᵈ′ d′
≤ᵈ′-≤-trans  _ = 
≤ᵈ′-≤-trans (σ≤ , term e) (s≤s d≤d′) = ≤ᵈ′-≤-trans σ≤ (s≤s d≤d′) , term (≤ᵈ-≤-trans e d≤d′)
≤ᵈ′-≤-trans (σ≤ , var) d≤d′ = ≤ᵈ′-≤-trans σ≤ d≤d′ , var

≤ᵈ-refl :  (Γ : Context n)  Γ ≤ᵈ depth Γ
≤ᵈ-refl  = 
≤ᵈ-refl (Γ ,[ Δ  _ ^ _ ]) with depth Γ | ≤ᵈ-refl Γ
... | zero |  =  , ≤ᵈ-refl Δ
... | suc n | ≤d = ≤ᵈ-≤-trans ≤d (s≤s (ℕ.m≤m⊔n n (depth Δ))) , ≤ᵈ-≤-trans (≤ᵈ-refl Δ) (ℕ.m≤n⊔m n (depth Δ))

≤ᵈ′-refl :  (σ : Subst Γ Γ′)  σ ≤ᵈ′ depthSubst σ
≤ᵈ′-refl  = 
≤ᵈ′-refl (σ , term e) with depthSubst σ | ≤ᵈ′-refl σ
... | zero |  =  , term (≤ᵈ-refl _)
... | zero | ≤d , var = (≤ᵈ′-≤-trans ≤d z≤n , var) , term (≤ᵈ-refl _)
... | suc n | ≤d = ≤ᵈ′-≤-trans ≤d (s≤s (ℕ.m≤m⊔n n _)) , term (≤ᵈ-≤-trans (≤ᵈ-refl _) (ℕ.m≤n⊔m n _))
≤ᵈ′-refl (σ , var x) = ≤ᵈ′-refl σ , var

≤ᵈ-dom :  (σ : Subst Γ Γ′)  Γ ≤ᵈ d  σ ≤ᵈ′ d
≤ᵈ-dom  _ = 
≤ᵈ-dom (σ , term _) (Γ≤d , Δ<d) = ≤ᵈ-dom σ Γ≤d , term Δ<d
≤ᵈ-dom (σ , var _) (Γ≤d , _) = ≤ᵈ-dom σ Γ≤d , var

lookupᵈ : σ ≤ᵈ′ d  (x : Γ ∋[ Δ  A ^ m≥n ])  lookup σ x ≤ᵈ″ d
lookupᵈ (σ , e) Z = e
lookupᵈ (σ , e) (S x) = lookupᵈ σ x

renameSubstᵈ : (ρ : Rename Γ Γ′)  σ ≤ᵈ′ d  renameSubst ρ σ ≤ᵈ′ d
renameSubstᵈ ρ  = 
renameSubstᵈ ρ (σ , term e) = renameSubstᵈ ρ σ , term e
renameSubstᵈ ρ (σ , var) = renameSubstᵈ ρ σ , var

extsᵈ : σ ≤ᵈ′ d  exts {Δ = Δ} {A = A} {m≥n = m≥n} σ ≤ᵈ′ d
extsᵈ σ = renameSubstᵈ S σ , var

exts++ᵈ :  Δ  σ  ≤ᵈ′ d  exts++ Δ σ ≤ᵈ′ d
exts++ᵈ  σ = σ
exts++ᵈ (Δ ,[ _  _ ^ _ ]) σ = extsᵈ (exts++ᵈ Δ σ)

exts↾ᵈ : σ ≤ᵈ′ d  exts↾ σ ≤ᵈ′ d
exts↾ᵈ  = 
exts↾ᵈ (_,_  {m≥n = ≤‴-refl} σ (term e)) = exts↾ᵈ σ
exts↾ᵈ (_,_ {m≥n = ≤‴-step m≥n} σ (term e)) = exts↾ᵈ σ , term e
exts↾ᵈ (_,_ {m≥n = ≤‴-refl} σ var) = exts↾ᵈ σ
exts↾ᵈ (_,_ {m≥n = ≤‴-step m≥n} σ var) = exts↾ᵈ σ , var

exts↾≥ᵈ : (m≥n : m ≥‴ n)  σ ≤ᵈ′ d  exts↾≥ m≥n σ ≤ᵈ′ d
exts↾≥ᵈ ≤‴-refl σ = σ
exts↾≥ᵈ (≤‴-step m≥n) σ = exts↾≥ᵈ m≥n (exts↾ᵈ σ)

infixl 5 _++ˢᵈ_
_++ˢᵈ_ : σ ≤ᵈ′ d  σ′ ≤ᵈ′ d  σ ++ˢ σ′ ≤ᵈ′ d
σ ++ˢᵈ  = σ
σ ++ˢᵈ (σ′ , e) = σ ++ˢᵈ σ′ , e

liftᵈ : (ρ : Rename Γ Γ′)  lift ρ ≤ᵈ′ d
liftᵈ {Γ = } ρ = 
liftᵈ {Γ = Γ ,[ _  _ ^ _ ]} ρ = liftᵈ (ρ  S) , var