{-# OPTIONS --safe #-} module Core.Substitution where open import Function.Base using (id) open import Data.Nat.Base using (ℕ; suc; zero) open import Core.Context open import Core.Term open import Core.Depth substᵈ : ∀ {d} {σ : Subst Γ Γ′} → σ ≤ᵈ′ d → Term n Γ A → Term n Γ′ A substSubstᵈ : ∀ {d} {σ : Subst Γ Γ′} → σ ≤ᵈ′ d → Subst Δ Γ → Subst Δ Γ′ substᵈ {d = d} {σ = σ} σᵈ (` x `with σ′) with d | lookup σ x | lookupᵈ σᵈ x | substSubstᵈ σᵈ σ′ ... | _ | var y | _ | σσ′ = ` y `with σσ′ ... | suc _ | term e | term-Δ<d | σσ′ = substᵈ (liftᵈ id ++ˢᵈ σσ′ᵈ) e where σσ′ᵈ = ≤ᵈ-dom σσ′ (untermᵈ term-Δ<d) substᵈ σᵈ `true = `true substᵈ σᵈ `false = `false substᵈ σᵈ (`if e `then e₁ `else e₂) = `if (substᵈ σᵈ e) `then (substᵈ σᵈ e₁) `else (substᵈ σᵈ e₂) substᵈ σᵈ (`λ e) = `λ (substᵈ (extsᵈ σᵈ) e) substᵈ σᵈ (e₁ · e₂) = substᵈ σᵈ e₁ · substᵈ σᵈ e₂ substᵈ σᵈ ⟨ e ⟩ = ⟨ substᵈ (exts↾ᵈ σᵈ) e ⟩ substᵈ σᵈ (`let⟨ Δ ⟩ e₁ e₂) = `let⟨ Δ ⟩ (substᵈ (exts++ᵈ (inject₁ Δ) σᵈ) e₁) (substᵈ (extsᵈ σᵈ) e₂) substSubstᵈ σᵈ ∅ = ∅ substSubstᵈ {Δ = Δ ,[ Δ′ ⊢ A ^ m≥n ]} σᵈ (σ′ , term e) = substSubstᵈ σᵈ σ′ , term (substᵈ (exts++ᵈ Δ′ (exts↾≥ᵈ m≥n σᵈ)) e) substSubstᵈ {σ = σ} σᵈ (σ′ , var x) = substSubstᵈ σᵈ σ′ , lookup σ x subst : Subst Γ Γ′ → Term n Γ A → Term n Γ′ A subst σ = substᵈ (≤ᵈ′-refl σ) substSubst : Subst Γ Γ′ → Subst Δ Γ → Subst Δ Γ′ substSubst σ = substSubstᵈ (≤ᵈ′-refl σ)