{-# OPTIONS --safe #-} module Core.Reduction where open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Data.Empty using (⊥; ⊥-elim) open import Function.Base using (id) open import Data.Nat.Base using (ℕ; suc; zero; _≥‴_; ≤‴-refl; ≤‴-step) open import Core.Context open import Core.Term open import Core.Substitution variable e e₁ e₂ e₃ e′ e₁′ e₂′ e₃′ : Term n Γ A transportContext : Γ ≡ Γ′ → Term n Γ A → Term n Γ′ A transportContext refl e = e _[_] : Term n (Γ ,[ Δ ⊢ A ^ m≥n ]) B → Term m (Γ ↾≥ m≥n ++ Δ) A → Term n Γ B e₁ [ e₂ ] = subst (lift id , term e₂) e₁ data Value : Term n Γ A → Set where `λ_ : (e : Term n (Γ , A ^ n) B) → Value (`λ e) `true : Value {Γ = Γ} `true `false : Value {Γ = Γ} `false ⟨_⟩ : (e : Term (suc n) (Γ ↾) A) → Value {Γ = Γ} ⟨ e ⟩ infix 4 _-→_ data _-→_ : Term n Γ A → Term n Γ A → Set where β-λ∙ : Value e₂ → (`λ e₁) · e₂ -→ e₁ [ e₂ ] β-if-true : `if `true `then e₁ `else e₂ -→ e₁ β-if-false : `if `false `then e₁ `else e₂ -→ e₂ β-let⟨⟩ : {e₂ : Term n (Γ ,[ Δ ⊢ A ^ ≤‴-step ≤‴-refl ]) B} → `let⟨ Δ ⟩ (⟨ e₁ ⟩) e₂ -→ e₂ [ transportContext (++-inject₁-↾ Δ) e₁ ] ξ-∙₁ : e₁ -→ e₁′ → e₁ · e₂ -→ e₁′ · e₂ ξ-∙₂ : Value e₁ → e₂ -→ e₂′ → e₁ · e₂ -→ e₁ · e₂′ ξ-if₁ : e₁ -→ e₁′ → `if e₁ `then e₂ `else e₃ -→ `if e₁′ `then e₂ `else e₃ ξ-let⟨⟩₁ : e₁ -→ e₁′ → `let⟨ Δ ⟩ e₁ e₂ -→ `let⟨ Δ ⟩ e₁′ e₂ data Progress : Term n Γ A → Set where p-step : e -→ e′ → Progress e p-value : Value e → Progress e progress : (e : Term n (inject₁ Γ) A) → Progress e progress' : inject₁ Γ′ ≡ Γ → (e : Term n Γ A) → Progress e progress' refl = progress progress (` x `with σ) = ⊥-elim (inject₁-∌-refl x) progress `true = p-value `true progress `false = p-value `false progress (`if e₁ `then e₂ `else e₃) with progress e₁ ... | p-step e₁-→e₁′ = p-step (ξ-if₁ e₁-→e₁′) ... | p-value `true = p-step β-if-true ... | p-value `false = p-step β-if-false progress (`λ e) = p-value (`λ e) progress (e₁ · e₂) with progress e₁ ... | p-step e₁-→e₁′ = p-step (ξ-∙₁ e₁-→e₁′) ... | p-value ve₁@(`λ e₁′) with progress e₂ ... | p-step e₂-→e₂′ = p-step (ξ-∙₂ ve₁ e₂-→e₂′) ... | p-value ve₂ = p-step (β-λ∙ ve₂) progress ⟨ e ⟩ = p-value ⟨ e ⟩ progress (`let⟨ Δ ⟩ e₁ e₂) with progress' (inject₁-++ Δ) e₁ ... | p-step e₁-→e₁′ = p-step (ξ-let⟨⟩₁ e₁-→e₁′) ... | p-value ⟨ e ⟩ = p-step β-let⟨⟩