{-# OPTIONS --safe #-}
module Core.Term where

open import Relation.Nullary using (¬_)
open import Function.Base using (id; _∘_)
open import Data.Nat.Base using (; suc; zero; _≥‴_; ≤‴-refl; ≤‴-step)

open import Core.Context

data Term : (n : )  Context n  Type  Set
infix 4 Term
syntax Term n Γ A = Γ  A ^ n

-- Substitution

infix 4 _⊩_
infix 4 _⊩[_⊢_^_]
infixl 5 _,_
infixl 5 _++ˢ_

data _⊩[_⊢_^_] Γ′ {m} (Δ : Context m) (A : Type) (m≥n : m ≥‴ n) : Set where
  term
    : (e : Γ′ ↾≥ m≥n ++ Δ  A ^ m)
      ----------------------------
     Γ′ ⊩[ Δ  A ^ m≥n ]
  var
    : (x : Γ′ ∋[ Δ  A ^ m≥n ])
      -------------------------
     Γ′ ⊩[ Δ  A ^ m≥n ]

data _⊩_ (Γ′ : Context n) : Context n  Set where
   : Γ′  
  _,_ :  (σ : Γ′  Γ)  (item : Γ′ ⊩[ Δ  A ^ m≥n ])  Γ′  Γ ,[ Δ  A ^ m≥n ]

lookup : Γ′  Γ  Γ ∋[ Δ  A ^ m≥n ]   Γ′ ⊩[ Δ  A ^ m≥n ]
lookup (σ , e) Z = e
lookup (σ , e) (S x) = lookup σ x

_++ˢ_ : Γ′  Γ  Γ′  Δ   Γ′  Γ ++ Δ
σ ++ˢ  = σ
σ ++ˢ (σ′ , item) = σ ++ˢ σ′ , item

Subst : Context n  Context n  Set
Subst Γ Γ′ = Γ′  Γ

-- Term definition

infix 5 `λ_
infixl 7 _·_
infixr 7 `if_`then_`else_
infix 9 `_`with_

data Term where
  `_`with_
    : Γ ∋[ Δ  A ^ ≤‴-refl ]
     Γ  Δ
      ----------------------
     Γ  A ^ n

  `true
      --------------
    : Γ  `Bool ^ n

  `false
      --------------
    : Γ  `Bool ^ n

  `if_`then_`else_
    : Γ  `Bool ^ n
     Γ  A ^ n
     Γ  A ^ n
      --------------
     Γ  A ^ n

  `λ_
    : Γ , A ^ n  B ^ n
      -----------------
     Γ  A  B ^ n

  _·_
    : Γ  A  B ^ n
     Γ  A ^ n
      -------------
     Γ  B ^ n

  ⟨_⟩
    : Γ   A ^ suc n
      -------------
     Γ   A ^ n

  `let⟨_⟩ :  Δ
     Γ ++ inject₁ Δ   A ^ n
     Γ ,[ Δ  A ^ ≤‴-step ≤‴-refl ]  B ^ n
      --------------------------------------
     Γ  B ^ n

-- Renaming

rename : Rename Γ Γ′  Term n Γ A  Term n Γ′ A
renameSubst : Rename Γ Γ′  Subst Δ Γ  Subst Δ Γ′

rename ρ (` x `with σ) = ` ρ x `with renameSubst ρ σ
rename ρ `true = `true
rename ρ `false = `false
rename ρ (`if e `then e₁ `else e₂) = `if (rename ρ e) `then (rename ρ e₁) `else (rename ρ e₂)
rename ρ ( e) =  (rename (ext ρ) e)
rename ρ (e₁ · e₂) = rename ρ e₁ · rename ρ e₂
rename ρ  e  =  rename (ext↾ ρ) e 
rename ρ (`let⟨ Δ  e₁ e₂) = `let⟨ Δ  (rename (ext++ (inject₁ Δ) ρ) e₁) (rename (ext ρ) e₂)

renameSubst ρ  =    
renameSubst ρ (_,_ {Δ = Δ} {m≥n = m≥n} σ (term  e)) = renameSubst ρ σ , term (rename (ext++ Δ (ext↾≥ m≥n ρ)) e)
renameSubst ρ (σ , var x) = renameSubst ρ σ , var (ρ x)

lift : Rename Γ Γ′  Subst Γ Γ′
lift {Γ = } ρ = 
lift {Γ = Γ ,[ Δ  A ^ m≥n ]} ρ = lift (ρ  S) , var (ρ Z)

exts : Subst Γ Γ′  Subst (Γ ,[ Δ  A ^ m≥n ]) (Γ′ ,[ Δ  A ^ m≥n ])
exts {Δ = Δ} {m≥n = m≥n} σ = renameSubst S σ , var Z

exts++ :  Δ  Subst Γ Γ′  Subst (Γ ++ Δ) (Γ′ ++ Δ)
exts++  σ = σ
exts++ (Δ ,[ _  _ ^ _ ]) σ = exts (exts++ Δ σ)

exts↾ : Subst Γ Γ′  Subst (Γ ) (Γ′ )
exts↾  = 
exts↾ (_,_ {m≥n = ≤‴-refl} σ (term e)) = exts↾ σ
exts↾ (_,_ {m≥n = ≤‴-step m≥n} σ (term e)) = exts↾ σ , term e
exts↾ (_,_ {m≥n = ≤‴-refl} σ (var x)) = exts↾ σ
exts↾ (_,_ {m≥n = ≤‴-step m≥n} σ (var x)) = exts↾ σ , var (∋-↾⁺ x)

exts↾≥ : (m≥n : m ≥‴ n)  Subst Γ Γ′  Subst (Γ ↾≥ m≥n) (Γ′ ↾≥ m≥n)
exts↾≥ ≤‴-refl σ = σ 
exts↾≥ (≤‴-step sm≥n) σ = exts↾≥ sm≥n (exts↾ σ)