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Typed Meta-Programming with Splice Variables

TSUNG-JU CHIANG

Typed meta-programming catches meta-programming errors early by checking them at definition time. This

paper introduces 𝜆○▷, a typed meta-programming language that uses nested context design and temporal-style

staging to track binding times and variable dependencies. The system supports a range of meta-programming

idioms, including explicit splice definitions, unhygienic macros and analytic macros. We formalize the language

in Agda, prove its safety propertes, define a denotational semantics to clarify the meaning of its types, and

show its soundness and completeness with respect to constructive linear-time temporal logic through type-

preserving translations. We compare our approach to contextual modal type theory-based systems, providing

insights into their similarities and differences.
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1 Introduction
Meta-programming allows programs to analyze and generate code at compile time, enabling flexible

abstractions while reducing runtime overhead. Typed meta-programming integrates type and scope

checking of code expressions into the type system, allowing meta programs to be specified with

precise types and checked at definition time. This makes meta-programming more predictable,

helping catch errors early and improving the overall programming experience.

A popular approach to typed meta-programming is based on temporal logic [Davies 1996], which
has been used in various languages including OCaml [Kiselyov 2014; Xie et al. 2023], Scala [Stucki

et al. 2018, 2021], and Haskell [Sheard and Jones 2002]. The temporal “next” operator ○ acts as a

type constructor for typed code expressions, accompanied by quoting and splicing operators similar

to Lisp’s quasi-quote mechanism. This allows meta-programs to be written in the same language as

the programs they generate, making them more intuitive and easier to reason about.

While the quote-and-splice syntax offers a powerful mechanism for meta-programming, it can

be restrictive in certain cases. For example, precisely controlling the evaluation order of splice

expressions can be challenging. Recently, Typed Template Haskell [Xie et al. 2022] addressed

this issue by translating splices into a sequence of definitions within a core calculus, allowing

the evaluation order of splice expressions to be explicitly specified. However, the core calculus is

intended as an intermediate compilation target, not for direct use by the programmers.

In this paper, we introduce let-splice bindings, a language construct that explicitly defines splice

expressions within a surface language. Unlike the quote-and-splice mechanisms, let-splice bindings

offer precise control over splice evaluation order. Compared to Xie et al. [2022], let-splice bindings

are more flexible and enable the sharing and reuse of splice computations across different contexts.

Our design incorporates a novel type system that tracks variable dependencies of splice definitions,
allowing splice expressions to be defined in a context where certain variables are not yet available.
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2 Tsung-Ju Chiang

Inspired by Contextual Model Type Theory (CMTT) [Jang et al. 2022; Nanevski et al. 2008], the type

system associates let-splice bindings with a typing context to capture these variable dependencies,

ensuring well-typedness of splice definitions. When a splice variable is used, the corresponding

dependencies must be provided. Those contexts can also be nested to specify more complex

dependencies. While the type system shares similarities with CMTT, it diverges in its logical

foundation (i.e. temporal logic) as well as its treatment of variable dependency tracking; a detailed

comparison with related work is provided in Section 10. Furthermore, as we will show, our design

serves as a basis for more advancedmeta-programming features, such as unhygienic macros [Barzilay
et al. 2011] and code pattern matching [Stucki et al. 2021], both of which require similar mechanisms

for managing variable dependencies. Our system naturally supports these features, demonstrating

its expressiveness and potential for future language extensions.

More specifically, we present two calculi: 𝜆○▷, a temporal-style multi-stage calculus supporting

let-splice bindings, featuring a novel contextual modality (Δ▷) for managing variable dependencies;

and 𝜆○▷
pat

, an extension of 𝜆○▷which seamlessly integrates code pattern matching and code rewriting.

For both calculi, we define a small-step operational semantics and a denotational semantics based

on a Kripke-style model. We prove soundness and completeness of our type system with respect to

constructive linear-time temporal logic [Kojima and Igarashi 2011]. Both calculi are fully formalized

in the Agda proof assistant, along with all the proofs. Each formalized definition and property is

marked with a clickable icon, linking to the corresponding Agda definition.

We offer the following contributions:

(1) Section 3 and 4 present a novel calculus 𝜆○▷ with let-splice bindings. It features dependency

tracking with nested typing context, a temporal-style code type for code expressions, and a

separate contextual modality for managing variable dependencies.

(2) Section 5 provides a type-preserving translation from 𝜆○▷ to constructive linear-time tem-

poral logic [Kojima and Igarashi 2011] and then to 𝜆○ [Davies 1996], offering insight into

their relationship.

(3) Section 6 introduces 𝜆○▷
pat
, an extension of 𝜆○▷ that allows for pattern matching on code,

allowing for inspection and rewriting of code fragments.

(4) Section 7 defines a denotational semantics for 𝜆○▷ and 𝜆○▷
pat

using a Kripke-style model.

(5) We formalize 𝜆○▷ and 𝜆○▷
pat

in the Agda proof assistant, and establish key properties and

theorems including progress and preservation.

Lastly, section 10 compares our approach to related work, including CMTT-based calculi [Jang et al.

2022], highlighting the differences in logical foundations and variable dependency tracking.

2 Motivation and Examples
In this section we outline the design of our calculus, and then demonstrate its expressiveness

through three examples: reuse of splice variables, unhygienic macros for anaphoric conditionals,

and pattern matching on code.

2.1 Staged Power Function
A classic example of code generation is the staged power function. Given a quoted expression

<e> and a known integer n , this function generates the expression <e * ... * e * 1> with 𝑛

repeated multiplications, avoiding recursion and thus reducing the overhead for any specific e . An

implementation using the traditional quote-and-splice syntax can be written as follows:

let power : int
1
code → int

0 → int
1
code

let rec power e n =

, Vol. 1, No. 1, Article . Publication date: January 2025.
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Typed Meta-Programming with Splice Variables 3

if n == 0 then <1>
else <$(e) * $(power e (n - 1))>

let power5 x = $(power <x> 5) -- generates (x * x * x * x * x * 1)

where a quotation <expr> represents the code fragment of the expression, and a splice $(expr)

extracts out the expression from the code fragment. Following Typed Template Haskell [Xie et al.

2022], power5 uses top-level splices (i.e. splices without surrounding quotations) for compile-time

code generation. For clarity, we annotate base types with superscripts to indicate their evaluation

stages, where 0 represents compile-time and 1 represents runtime. For example, int0 denotes a

compile-time integer and int
1 denotes a runtime integer. Code expressions have a code type;

therefore, int1 code represents a quoted expression of a runtime integer.

While the quote-and-splice syntax is useful, it can also introduce complexities. Specifically,

the evaluation order of splice expressions can be unclear. For example, evaluating the expression

(e1 <e2 $(e3)>) will first evaluate e1 and then e3 , but not e2 . This requires a level-indexed
reduction relation [] that keeps track of the relative number of quotations and splices during

evaluation, adding complexity to both the implementation and the meta-theory. Moreover, in the

context of compile-time code generation, it raises the question of how to evaluate nested splices, e.g.

$(e1) $($(e2)) , where e1 appears first, but e2 has more splices. Typed Template Haskell will

evaluate e2 before e1 , while both Scala [Stucki et al. 2018] and OCaml [Xie et al. 2023] disallow

nested splices.

Our design introduces novel let-splice bindings that make splice definitions explicitly. In particular,

an implementation of the staged power function using our syntax can be written as:

let power : int
1
code → int

0 → int
1
code

let rec power e n =

if n == 0 then <1>
else

let$ s1 : int
1
= e in -- lifted

let$ s2 : int
1
= power e (n - 1) in -- lifted

<s1 * s2>

In our calculus, the splicing operation is replaced instead by let-splice bindings (let$ ), which bind

a code expression to a splice variable. In this case, the splice variables s1 and s2 represent the

splice of e and of power e (n - 1) , respectively. Since both variables represent splice expressions,

they can be directly used as s1 * s2 within the quotation. Formally, quotations, let-splices, and

splice variables are all managed by levels. As shown in this example, splice variables with explicit

dependencies clarify the order in which splices are computed.

In this particular case, the two splice definitions do not capture any free variables. More inter-

estingly, definitions can be annotated with a list of variable dependencies. This provides flexibility
since splice expressions can depend on values that are only available when the splice variable is

used. For example, we have:

let$ s3 : (x : int
1 ⊢ int

1
) = power <x> 5 -- lifted, with x as dependency

let power5 x = s3 with x = x

As the original top-level splice $(power <x> 5) refers to the variable x , the splice variable s3 is

given type (x : int
1 ⊢ int

1
) , allowing x:int

1 to be used within its definition. When using a

splice variable like s3 , the syntax (s3 with x = x) provides a delayed substitution. This allows
us to replace the variable dependencies with concrete values. For clarity, we explicitly write out all

substitutions in the examples. In practice, a compiler could simply capture dependencies from the

, Vol. 1, No. 1, Article . Publication date: January 2025.
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4 Tsung-Ju Chiang

context, so entries like x = x can be omitted. More generally, we can write any expression e in

(s3 with x = e) .

Notably, types like (x : int
1 ⊢ int

1
) are first-class. Therefore, we can have dependencies in

normal let definitions:

let w : (x : string
1
; y : int

1 ⊢ int
0
) = e

This binds w to expression e , which depends on x and y and produces a value of type int
0 .

Moreover, function arguments can also be declared with dependencies:

val f : (x : string
1
; y : int

1 ⊢ int
0
) → int

0

let f z = (z with x = "hello"; y = 42)

Here, f takes an argument with dependencies x and y , and uses it with x bound to "hello" and

y bound to 42 . We can then write, for example, f w .

Furthermore, dependencies can be nested, allowing splices to depend on other splices and

effectively enabling nested splices:

let z : (s : (x : int
1 ⊢ string

1
) ⊢ string

1
code) = <s with x = 42>

2.2 Reuse of Splice Variables
Consider the following meta-program, where f : int

1
code → int

1
code :

<fun x → $(f <x>) + $(f <x>)>

This program generates a function that applies f to its argument x twice and adds the results. For

example, given f y = <$(y) + 1> , the program generates:

<fun x → (x + 1) + (x + 1)>

However, in this case, the two splices in the original computation are evaluated sequentially, leading

to duplicated computations of $(f <x>) .

To eliminate duplicated computations, we can pre-compute the result of the splice expression:

let s = <fun z → $(f <z>)> in
<fun x → $(s) x + $(s) x>

Unfortunately, while this avoids redundant computations, it introduces two unnecessary beta-

redexes in the generated code:

<fun x → ((fun z → z + 1) x) + ((fun z → z + 1) x)>

In our calculus, we can easily reuse splice variables without introducing unnecessary abstractions.

Specifically, we can express the original computation as:

let$ s : (z : int
1 ⊢ int

1
) = f <z> in

<fun x → (s with z = x) + (s with z = x)>

Here, let$ declares a splice variable s with a dependency on z: int
1 . The expression f <z> is

evaluated symbolically, which can refer to variable z . The (s with z = x) syntax then directly

substitutes z with x . In this case, the splice expression is only evaluated once, and the generated

code is the desired <fun x → (x + 1) + (x + 1)> . In other words, the program achieves both

computational efficiency and clean generated code. Moreover, we can also reuse the same splice

variable and provide different substitutions, e.g. (s with z = x) + (s with z = (x + 2)) .

, Vol. 1, No. 1, Article . Publication date: January 2025.
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Typed Meta-Programming with Splice Variables 5

2.3 Unhygienic Macros
Hygienic macros, whose expansion is guaranteed to not accidentally capture variables, are well

established, but can sometimes be insufficient. Barzilay et al. [2011] observed that there are common

kinds of unhygienic macros that are practically useful. One common kind of them that implicitly

introduce bindings are “notoriously difficult to deal with”. Two such well-known example are a

looping macro (e.g. while ) that implicitly binds a variable (e.g. abort ) that can be used to escape

the loop inside the loop body [Clinger 1991], and anaphoric conditionals which introduces a binding

to hold the value of the tested expression.

In this work, we use unhygienic macros to mean functions whose arguments may depend on

additional later-stage variables that are to be supplied when the function is used, and unhygienic
values as its first-class counterpart, i.e. values that may depend on additional later-stage variables.

To demonstrate how unhygienic macros work in our calculus, we consider anaphoric conditionals

as an example. Concretely, we would like to create a “macro” aif , with which we can write the

following program:

aif <big-long-calculation> <foo it> <bar it>

Here, both then- and else-branches can refer to the variable it to stand for the result of the

big-long-calculation . Specifically, the program will expand to:

<let it = big-long-calculation in
if it then (foo it) else (bar it)>

In a statically typed language, it is obvious that it will stand for True in the then-branch and

False in the else-branch, so the macro is less useful. In languages like Scheme, however, the value

of it is not necessarily False in the else-branch.

In our calculus, we can define aif with the following function type signature, where the second

and third arguments are declared with an additional dependency on variable it :

val aif : bool
1
code

→ (it : bool
1 ⊢ 'a

1
code)

→ (it : bool
1 ⊢ 'a

1
code)

→ 'a
1
code

When applied, the type signature of aif informs the type checker to introduce a new variable it

into the scope of the second and third arguments (e.g. foo and bar ), allowing them to directly

refer to it. Given this signature, we can implement aif as follows:

let aif cond foo bar =

let$ s1 : bool
1
= cond in

let$ s2 : (it : bool
1 ⊢ 'a

1
) = foo with it = it in

let$ s3 : (it : bool
1 ⊢ 'a

1
) = bar with it = it in

<let it = s1 in
if it then (s2 with it = it)
else (s3 with it = it)>

The function takes three code arguments, cond , foo , and bar , with the latter two depending

on an additional variable it . First, the arguments are unwrapped using let$ , binding them to

splice variables s1 , s2 , and s3 for use inside the quotation. The dependencies of foo and bar

are explicitly rebound as dependencies of their corresponding splice variables. Then, the output

code expression is constructed using a quotation. The splice variables indicate where each piece of

, Vol. 1, No. 1, Article . Publication date: January 2025.
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6 Tsung-Ju Chiang

code should be inserted, while the with syntax specifies the desired binding structure. Notably,

while the code expressions for both branches will get generated, only the selected branch will be

evaluated depending on the value of it .

By supporting unhygienic macros, our calculus can express a wider range of meta-programming

patterns, including those that intentionally "break" lexical scoping in a well-typed way.

2.4 Pattern Matching on Code
So far we have focused on generative meta-programming, where smaller code fragments are

combined to create larger ones, as seen in the power and aif examples. In contrast, analytic
macros [Ganz et al. 2001; Stucki et al. 2021] can inspect the content of or take apart code fragments,

and enable useful techniques like code rewriting for optimization.

In staging calculi, this is often realized through pattern matching on code [Jang et al. 2022;

Parreaux et al. 2017]. However, typing code patterns is much more complicated, especially since

matching under a binder can yield a code expression that contains the bound variable inaccessible

outside of its scope.

We extend our calculus with support for pattern matching on code, which allows us to inspect

the structure of code fragments. Interestingly, we show that pattern matching can be naturally

supported with variable dependencies.

As an example, consider a program that computes the partial derivative of an arithmetic expres-

sion as a code fragment. Specifically, the following function partial recursively matches the input

argument e , generating code for its partial derivative with respect to an variable var :

val (+) (*) : int
1 → int

1 → int
1

val partial : (var : int
1 ⊢ int

1
code → int

1
code)

let rec partial e =

match$ e with
| (`var) → <1>
| (g `+ h) →

let$ dg = (partial with var = var) <g> in
let$ dh = (partial with var = var) <h> in
<dg + dh>

| (g `* h) →
let$ dg = (partial with var = var) <g> in
let$ dh = (partial with var = var) <h> in
<g * dh + h * dg>

| _ → <0>

The function uses match$ to perform pattern matching on code. Code patterns distinguish two

kinds of variables: pattern variables like g and h match any code expression, and variables like

`var , `+ and `* match those specific identifiers. This illustrates how our calculus supports analytic

macros naturally by combining pattern matching and unhygienic variable bindings.

We can apply partial by providing var and an argument. For example, the following program:

let$ df : (x y : int
1 ⊢ int

1
) = (partial with var = x) <x * y + 1>

generates <(1 * y + x * 0) + 0> for any given x and y . We can use df by providing specific x

and y , e.g. df with x = 1, y = 2 .

Dependency tracking becomes crucial when matching under a binder. For example, consider

computing the partial derivative of a let expression let (y : int) = f in g . Using the chain

, Vol. 1, No. 1, Article . Publication date: January 2025.
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rule, the derivative can be expressed as:

𝜕𝑥𝑔(𝑥, 𝑓 (𝑥)) = 𝜕𝑥𝑔(𝑥,𝑦) |𝑦=𝑓 (𝑥 ) +𝜕𝑦𝑔(𝑥,𝑦) |𝑦=𝑓 (𝑥 ) ·𝜕𝑥 𝑓 (𝑥)

This can be implemented as follows:

match$ e with
| ...

| (let (y : int
1
) = f in g) →

let$ dg1 : (y : int
1 ⊢ int

1
)

= (partial with var = var) <g with y = y> in
let$ dg2 : (y : int

1 ⊢ int
1
)

= (partial with var = y) <g with y = y> in
let$ df = (partial with var = var) <f> in
<let (y : int1) = f in
(dg1 with y = y) + (dg2 with y = y) * df>

Here, g is matched as a splice variable with an additional dependency on y . dg1 computes the

derivative of g with respect to the given variable var , dg2 computes the derivative of g with

respect to y , and df computes the derivative of f . The final expression combines these derivatives

according to the chain rule.

2.5 Code Rewriting
Another useful analytic feature is code rewriting [Parreaux et al. 2017], which replaces all occurrences
of a pattern in a target expression with a replacement expression. In our extended calculus, code

rewriting can be expressed as:

rewrite p as e_replacement in e_target

where p is a code pattern and e_replacement and e_target are code expressions. This feature is

especially useful for optimizing code that are programmatically generated, which often contain

redundant code that can be simplified. For example, consider the code generated by the partial

example above:

<(1 * y + x * 0) + 0>

The 1 * , * 0 , and + 0 are redundant. We can use code rewriting to simplify the expression:

let$ df_opt : (x y : int
1 ⊢ int

1
) =

rewrite (`1 `+ z) as <z> in
rewrite (z `+ `0) as <z> in
rewrite (z `+ `0) as <z> in
rewrite (z `* `0) as <0> in
<df with x = x; y = y>

which simplifies the expression to <y> .

3 Core Syntax and Typing
We introduce 𝜆○▷, a typed lambda calculus with quotations, let-quote bindings, and unhygienic

functions. The full syntax of 𝜆○▷ is summarized in fig. 1.

, Vol. 1, No. 1, Article . Publication date: January 2025.
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8 Tsung-Ju Chiang

3.1 Types and Typing Contexts
A key design of 𝜆○▷ is the use of nested typing contexts to track variable dependencies and stage

levels. They enable unhygienic macros and serves as the foundation for supporting code pattern

matching, which will be introduced in section 6.

3.1.1 Contexts . Contexts are defined by the grammar:

Γ,Δ F · | Γ, x : [Δ ⊢n A]
Each variable x in a context is associated with:

• A context Δ, which tracks the additional variable dependencies of x. When Δ is empty, we

write x : An
as shorthand for x : [· ⊢n A].

• A stage level n which specifies the stage of computation at which x can be accessed. The

stage levels carry the same meaning as in Davies’s 𝜆○: higher values correspond to later

stages, such as runtime, while lower values correspond to earlier stages, such as compile

time.

• A type A, which describes the kind of value x represents.

3.1.2 Types . Types are defined by the grammar:

A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A

• bool represents booleans.
• [Δ ⊢ A] → B represents unhygienic functions from A to B, where the argument may

additionally depend on variables in Δ. When Δ is empty, these are just normal functions,

and we write A→ B as shorthand for [· ⊢ A] → B.
• ○A represents quoted expressions of type A, whose computations happen at the next stage,

as in 𝜆○ .

• Δ ▷A represents unhygienic values of type A with dependencies Δ. This type is dual to
the unhygienic function type, in the sense that (Δ ▷A) → B is equivalent to [Δ ⊢ A] → B.
We keep [Δ ⊢ A] → B in the syntax as it allows us to express unhygienic macros more

naturally.

3.1.3 Well-stagedness. We consider only well-staged contexts and types in our typing rules. A

context Γ is well-staged at level n, if every entry x : [Δ ⊢m A] in Γ meets two conditions:

• m ≥ n, and
• Δ and A are well-staged at level m.

In other words, stage levels can only stay the same or increase as the nesting of [] becomes deeper.

For types, well-stagedness is defined as follows:

• bool is well-staged at any level.

• [Δ ⊢ A] → B is well-staged at level n, if
– A and B are well-staged at level n, and
– Δ is well-staged at level n + 1.

• ○A is well-staged at level n if A is well-staged at level n + 1.
• Δ▷A is well-staged at level n if A is well-staged at level n and Δ is well-staged at level n+ 1.

Staging of ○A reflects that quotations contain expressions belonging to the next stage. Staging of

[Δ ⊢ A] → B and Δ▷A captures the concept of unhygienic values: values that depend on later-stage

variables and compute with them symbolically.

Note that in 𝜆○ staging of types is implicit and relative to the context, while in 𝜆○▷ staging is

explicit and absolute. This is more of a matter of presentation than a fundamental difference: we
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could have staged the Δ’s in our types relatively to achieve relative staging, but we chose to make

staging explicit to simplify the presentation of our rules. We discuss the trade-off between the two

approaches in section 8.1.

3.1.4 Stage Annotation. When the staging level isn’t clear from the context, we use superscripts

Γn and An
to indicate their levels. This notation binds more tightly than type constructors and the

comma “,” in contexts. Using this notation, we can annotate the grammar as follows:

Γn,Δn F · | Γn, x : [Δm ⊢m Am] (𝑚 ≥ 𝑛)
An, Bn F bool | [Δn+1 ⊢ An] → Bn | ○An+1 | Δn+1 ▷An

3.1.5 Restriction . The restriction of a context Γ to level n, written Γ↾n, removes all variables in

Γ with levels less than n. Restriction preserves well-stagedness: if Γ is well-staged at some level n,
then Γ↾m is well-staged at level m for any m.

3.2 Expressions
Next, we define the syntax of expressions in 𝜆○▷. The grammar is as follows:

e F x𝜎 (Variables)

| true | false | if e1 then e2 else e3 (Booleans)

| 𝜆Δx : A. e | e1 e2 (Functions)

| ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2 (Quote and Unquote)

| wrapΔe | letwrapΔ x : A = e1 in e2 (Wrap and Unwrap)

𝜎 F · (Empty)

| 𝜎, x ↦→ y (Renaming)

| 𝜎, x ↦→ e (Substitution)

x𝜎 represents a variable x paired with a delayed substitution 𝜎 . The delayed substitution maps

dependencies of x to variables or expressions in the current context, and is appliedwhen x is replaced
with a concrete expression; the formal definition of substitution is given in Section 4.1. 𝜆Δx : A. e
defines an unhygienic function whose argument x depends on variables in Δ; e1 e2 applies a function
e1 to an argument e2. ⟨e⟩ quotes an expression e into a code expression; letΔ⟨x : A⟩ = e1 in e2
unquotes a code expression e1 that can depend on variables in Δ, introducing a next-stage variable x
with dependencies Δ, which can be used inside quotations in e2. wrapΔe wraps an expression e with
dependencies Δ, allowing it to symbolically compute with the variables; letwrapΔ x : A = e1 in e2
unwraps a wrapped expression e1, introducing a current-stage variable x with dependencies Δ,
directly usable in e2. In all cases, the subscripted Δ is staged one level higher than the current

context, and can be arbitrarily nested.

Substitutions can contain two kinds of entries: x ↦→ y renames a dependency x to another

variable y, and x ↦→ e maps a dependency x to an expression e.
Table 1 summarizes the mapping between concrete and abstract syntax.

3.3 Typing Rules
The typing judgment Γ ⊢n e : A assigns a type A to an expression e under the context Γ, at stage
level n. The following assumptions apply:

(1) All contexts contain distinct variables.

(2) Both the context Γ and the type A are well-staged at level n.
The rules are defined as follows:
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10 Tsung-Ju Chiang

Concrete Syntax Abstract Syntax

x with y = e1; z = e2 xy ↦→e1,z ↦→e2
fun x : (∆ ⊢ A) → e 𝜆Δx : A. e
let x : (∆ ⊢ A) = e1 in e2 (𝜆Δx : A. e2) e1
let$ x : (∆ ⊢ A) = e1 in e2 letΔ⟨x : A⟩ = e1 in e2
f x f x
<e> ⟨e⟩
true false true false
if e1 then e2 else e3 if e1 then e2 else e3
Table 1. Mapping between concrete and abstract syntax

Γ ⊢n e : A (Expression Typing )

VarSubst

Γ ∋ x : [Δ ⊢n A] Γ ⊢ 𝜎 : Δ

Γ ⊢n x𝜎 : A

True

Γ ⊢n true : bool

False

Γ ⊢n false : bool

If

Γ ⊢n e1 : bool Γ ⊢n e2 : A Γ ⊢n e3 : A
Γ ⊢n if e1 then e2 else e3 : A

CtxAbs

Γ, x : [Δn+1 ⊢n A] ⊢n e : B
Γ ⊢n 𝜆Δx : A. e : [Δ ⊢ A] → B

CtxApp

Γ ⊢n e1 : [Δn+1 ⊢ A] → B Γ,Δ ⊢n e2 : A
Γ ⊢n e1 e2 : B

Quote

Γ↾n+1 ⊢n+1 e : A
Γ ⊢n ⟨e⟩ : ○A

LetQuote

Γ,Δn+1 ⊢n e1 : ○A Γ, x : [Δ ⊢n+1 A] ⊢n e2 : B
Γ ⊢n letΔ⟨x : A⟩ = e1 in e2 : B

Wrap

Γ,Δn+1 ⊢n e : A
Γ ⊢n wrapΔe : Δ ▷A

LetWrap

Γ ⊢n e1 : Δ ▷A Γ, x : [Δ ⊢n A] ⊢n e2 : B
Γ ⊢n letwrapΔ x : A = e1 in e2 : B

Judgment Γ ⊢ 𝜎 : Γ′ types a substitution 𝜎 that maps variables in Γ′ to variables or expressions in Γ.

Γ ⊢ 𝜎 : Γ′ (Substitution Typing )

S-Empty

Γ ⊢ · : ·

S-Rename

Γ ⊢ 𝜎 : Γ′ Γ ∋ y : [Δ ⊢m A]
Γ ⊢ (𝜎, x ↦→ y) : Γ′, x : [Δ ⊢m A]

S-Subst

Γ ⊢ 𝜎 : Γ′ Γ↾m,Δ ⊢m e : A

Γ ⊢ (𝜎, x ↦→ e) : Γ′, x : [Δ ⊢m A]

Rule VarSubst defines how variables may be used in expressions. A variable x : [Δ ⊢n A] can
only be used at level n, and must be accompanied by a substitution 𝜎 that maps each dependency

in Δ to an expression with the corresponding type under Γ. If Δ is empty, as is the case for normal

variables, then 𝜎 is also empty.

The rules True, False, and If are standard.
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Typed Meta-Programming with Splice Variables 11

For the unhygienic function type [Δ ⊢ A] → B, rule CtxAbs creates an unhygienic function,

allowing its argument to refer to variables in a context Δ. Rule CtxApp applies an unhygienic

function, extending the context with variables from Δ to type-check the argument.

RuleQuote quotes an expression into a code expression. The rule increases the level to n + 1
and updates the context to Γ↾n+1 to type-check the quoted expression e. If e has type A, ⟨e⟩ has the
code type ○A. Rule LetQuote unquotes a code expression and binds it to a variable x at the next

level. This variable represents an open code fragment that may additionally depend on variables in

a context Δ.
RuleWrapwraps an expression with dependencies Δ, producing an unhygienic value type Δ▷A,

Note that unlike the ○ type, Δ ▷ does not change the stage level of the expression. Rule LetWrap

unwraps a wrapped expression and binds it to a contextual variable x : [Δ ⊢n A].
Typing rules for substitutions ensure that the substitution 𝜎 provides mappings for corresponding

variables in Γ′. We call Γ′ the domain of 𝜎 and Γ the codomain. Rule S-Rename checks that renaming

preserves the stage level and dependencies of a variable. Rule S-Subst checks that substitution

maps an m-level variable x to an m-level expression e, where Γ is restricted to level m and is then

appended with Δ to type-check e.

4 Dynamics
We describe a small-step, call-by-value operational semantics for 𝜆○▷, based on term substitution.

4.1 Substitution
Substitution is mutually defined on typed expressions and substitutions. Given a substitution

Γ2 ⊢ 𝜎 : Γ1, e[𝜎] applies 𝜎 to a typed expression Γ1 ⊢n e : A, while 𝜎1 [𝜎] applies 𝜎 to all entries of

a type substitution Γ1 ⊢ 𝜎1 : Δ, computing their composition. For e[𝜎], The only non-trivial case

is the variable case, which will be discussed in detail. All the other cases only involve weakening

or restricting the substitution and recursing into the sub-expressions. For 𝜎1 [𝜎], the function

recursively processes all entries of 𝜎1.

We introduce the following notations for substitutions: 𝜎↾n restricts the domain of 𝜎 by removing

entries with levels smaller than n, similar to context restriction. idΓ denotes the identity substitution
on Γ, i.e. x1 ↦→ x1, x2 ↦→ x2 . . . for x𝑖 ∈ Γ. They have the following types:

• If Γ2 ⊢ 𝜎 : Γ1 then Γ2↾n ⊢ 𝜎↾n : Γ1↾n.
• Γ ⊢ idΓ : Γ.

Given a typed substitution, we write xmΔ ↦→ e if the substitution entry is typed x : [Δ ⊢m A] in the

domain of the substitution and maps to 𝑒 .

e[𝜎] (Expression Substitution )

(x𝜎1 ) [𝜎] ≔
{
y(𝜎1 [𝜎 ] ) if 𝜎 (x) = y,
e[idΓ2↾m , 𝜎1 [𝜎]] if 𝜎 (x) = e.

(true) [𝜎] ≔ true
(false) [𝜎] ≔ false

(if e1 then e2 else e3) [𝜎] ≔ if e1 [𝜎] then e2 [𝜎] else e3 [𝜎]
(𝜆x : A. e) [𝜎] ≔ 𝜆x : A. e[𝜎, x ↦→ x]
(e1 e2) [𝜎] ≔ e1 [𝜎] e2 [𝜎]
(⟨e⟩) [𝜎] ≔ ⟨e[𝜎↾]⟩

(letΔ⟨x : A⟩ = e1 in e2) [𝜎] ≔ letΔ⟨x : A⟩ = (e1 [𝜎, idΔ]) in (e2 [𝜎, x ↦→ x])
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12 Tsung-Ju Chiang

(wrapΔe) [𝜎] ≔ wrapΔ (e[𝜎, idΔ])
(letwrapΔ x : A = e1 in e2) [𝜎] ≔ letwrapΔ x : A = (e1 [𝜎]) in (e2 [𝜎, x ↦→ x])

𝜎1 [𝜎] (Substitution Substitution )

(·) [𝜎] ≔ ·
(𝜎1, x ↦→ y) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ 𝜎 (y)
(𝜎1, xmΔ ↦→ e) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ e[𝜎↾m, idΔ]

4.1.1 Termination. The substitution functions defined above is not structurally recursive on e by
its definition, so it’s not immediately obvious whether the function is total. The problematic case is

the second case of (x𝜎1 ) [𝜎]:
(x𝜎1 ) [𝜎] = e[idΓ2↾m , 𝜎1 [𝜎]] if 𝜎 (x) = e.

Here, the term e is not a subterm of x𝜎1 but rather an element of the substitution 𝜎 . Therefore,

we cannot argue for termination based solely on the size of the input expression. To prove that

substitution terminates and is thus well-defined, we define a depth measure on typed substitutions

and use it in additon to the size of the expression to show termination. From the definition of

substitution, we observe that the mesure must decrease in the problematic case and be preserved

under restriction and weakening. These observations motivate the following definitions:

depth(Γ) (Context Depth )

depth(·) ≔ 0

depth(Γ, x : [Δ ⊢m A]) ≔ depth(Γ) ⊔ (depth(Δ) + 1)

depth(𝜎) (Substitution Depth )

depth(·) ≔ 0

depth(𝜎, x ↦→ y) ≔ depth(𝜎)
depth(𝜎, xmΔ ↦→ e) ≔ depth(𝜎) ⊔ (depth(Δ) + 1)

Preservation of depth is trivial, because renamings are simply not counted. For decrement, we

have the following lemma:

Lemma 4.1 (Substitution depth decreases ). Let Γ1 ⊢ 𝜎1 : Δ and Γ2 ⊢ 𝜎 : Γ1. If xmΔ ↦→ e ∈ 𝜎
then

depth(𝜎1 [𝜎]) ≤ depth(Δ) < depth(𝜎).
These together show that substitution is well-defined. In additon, substitution preserves typing,

as stated in the following lemma:

Lemma 4.2 (Substitution ). Given Γ2 ⊢ 𝜎 : Γ1,
• if Γ1 ⊢n e : A then Γ2 ⊢n e[𝜎] : A,
• if Γ1 ⊢ 𝜎1 : Δ then Γ2 ⊢ 𝜎1 [𝜎] : Δ.

4.2 Reduction
We first define values and evaluation contexts:

Values v F true | false | 𝜆Δx : A. e | ⟨e⟩ | wrapΔv
Evaluation Contexts E F [] | E e2 | v1 E | if E then e2 else e3 | letΔ⟨x : A⟩ = E in e2

| wrapΔE | letwrapΔ x : A = E in e2
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Typed Meta-Programming with Splice Variables 13

Evaluation contexts E are essentially an expression with a hole [], and we write 𝐸 [e] for the
expression obtained by pulling e into the hole of E.

The call-by-value reduction is defined as follows. We write −→𝛽 for a step of beta reduction, and

−→ for evaluation under an evaluation context.

Γ ⊢n e −→ e′ (Call-by-value Reduction )

CtxAppAbs

Γ ⊢n (𝜆Δx : A. e1) v2 −→𝛽 e1 [idΓ, x ↦→ v2]

LetQuoteQuote

Γ ⊢n letΔ⟨x : A⟩ = ⟨e1⟩ in e2 −→𝛽 e2 [idΓ, x ↦→ e1]

LetWrapWrap

Γ ⊢n letwrapΔ x : A = wrapΔv1 in e2 −→𝛽 e2 [idΓ, x ↦→ v1]

IfTrue

Γ ⊢n if true then e2 else e3 −→𝛽 e2

IfFalse

Γ ⊢n if false then e2 else e3 −→𝛽 e3

Cong

Γ ⊢n e1 −→𝛽 e2
Γ′ ⊢n 𝐸 [e1] −→ 𝐸 [e2]

Preservation is a corollary of the substitution lemma (4.2).

Lemma 4.3 (Preservation ). If Γ ⊢n e : A and Γ ⊢n e −→ e′ then Γ ⊢n e′ : A.

Progress holds for expressions that don’t contain variables at the current level. This reflects our

definition of “unhygienic values”: values in this calculus are not necessarily closed terms but may

include variables from later stages.

Lemma 4.4 (Progress ). If Γn+1 ⊢n e : A then either e is a value or there exists e′ such that
Γn+1 ⊢n e −→ e′.

Notably, since we allow arbitrary nesting of dependencies, having delayed substitutions in our

calculus is crucial for progress to hold. For example, consider the following code:

letx:[z:bool⊢1bool] ⟨y : bool⟩ =
let ⟨z : bool⟩ = ⟨true⟩ in ⟨xz ↦→z⟩

in ⟨true⟩

Here, y is declared with a dependency x, and x is in turn declared with dependency z. To evaluate

the inner let binding, we need a way to substitute z with true in the with clause. Without allowing

delayed substitutions to contain arbitrary expressions (e.g. xz ↦→true), the substitution would not be

possible, and the evaluation would get stuck. In contrast, the core calculus of Xie et al. [2022] does

not allow nested dependencies. As a result, in such a system, variables can simply capture their

dependencies from the context without breaking progress.

4.3 Example
We demonstrate the reduction steps of the calculus with a larger example. Since the code fragments

are longer, we present them in the concrete syntax for better readability. The mapping between the

concrete syntax and the abstract syntax is provided in table 1.
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14 Tsung-Ju Chiang

1let$ y : (x : (z : bool
1 ⊢ bool

1
) ⊢ bool

1
) =

2let$ z = <true> in <x with z = z>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = x) and z>

Which definition of z is supplied to x?

First, line 2 is reduced to <x with z = true> , as we discussed in the previous subsection.

1let$ y : (x : (z : bool
1 ⊢ bool

1
) ⊢ bool

1
) =

2<x with z = true>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = x) and z>

Then, definition of y is substituted with the content of <x with z = true> , which triggers the

delayed substitution with x = x , which has no visible effect.

1let$ x : (z : bool
1 ⊢ bool

1
) = <not z> in

2let$ z = <false> in
3<(x with z = true) and z>

Then, x is substituted with the context of <not z> , which triggers the delayed substitution

with z = true and results in <not true> .

1let$ z = <false> in
2<(not true) and z>

Finally, z is substituted with the content of <false> .

<(not true) and false>

This is the final result, as quoted expressions are values and cannot be reduced further.

4.3.1 Changing Dependencies. Say we want x to capture the z = false instead, we either have

to change the definition of y to explicitly capture z ,

1let$ y : (x : (z : bool
1 ⊢ bool

1
); z : bool

1 ⊢ bool
1
) =

2<x with z = z>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = x; z = z) and z>

or change the definition of y to capture a non-capturing version of x ,

1let$ y : (x : bool
1 ⊢ bool

1
) =

2<x>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = (x with z = z)) and z>
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Typed Meta-Programming with Splice Variables 15

These examples demonstrate the capability of our type system to express and enforce different

kinds of variable dependencies in unhygienic programs.

5 Translating between 𝜆○▷, 𝜆○, and CLTL
We show that 𝜆○▷ is sound and complete with respect to 𝜆○ using its Hilbert-style counterpart,

Constructive Linear-time Temporal Logic (CLTL).
Davies introduced 𝜆○ [Davies 1996], the first multi-stage language inspired by temporal logic.

Kojima and Igarashi developed a Hilbert-style axiomatization of 𝜆○ called Constructive Linear-time
Temporal Logic (CLTL) [Kojima and Igarashi 2011], which is characterized by the following axioms

and rules:

Axioms
• any intuitionistic tautology instance

• K : ○(A→ B) → ○A→ ○B
• CK : (○A→ ○B) → ○(A→ B)

Rules
• If A→ B and A, then B.
• If A, then ○A.

To show soundness, we translate 𝜆○▷ types into CLTL formulas and 𝜆○▷ expressions into 𝜆○

expressions. For completeness, we show that CLTL formulas are provable in 𝜆○▷. A direct translation

from 𝜆○ to 𝜆○▷, similar to the translation from 𝜆○ to 𝐹 ⟦⟧ in [Xie et al. 2022], is also possible but is

not covered here.

5.1 𝜆○▷ to CLTL
We convert types and judgments in 𝜆○▷ to CLTL formulas. Intuitively, the translation involves

adding correct number of circles to match the level of staging. For example, type [Δ ⊢ A] → B
corresponds to (○Δ→ A) → B and Δ▷A corresponds to ○Δ→ A. Since CLTL has the equivalence
(○A → ○B) ↔ ○(A → B), the way circles are introduced is not important if provability is the

main concern. The formal translation for types is defined as follows:

⟦A⟧ (Type Translation )

⟦bool⟧ ≔ bool

⟦○A⟧ ≔ ○⟦A⟧
⟦[Δn+1 ⊢ A] → B⟧ ≔ (Δ %n ⟦A⟧) → ⟦B⟧

⟦Δn+1 ▷A⟧ ≔ Δ %n ⟦A⟧
The notation Γ %n A recursively flattens Γ into a nested chain of implications pointing to A, adding
○ constructors to lower each item from its original level to level 𝑛, such that if

Γ = x1 : [Δ1 ⊢m1 A1], . . . , xk : [Δk ⊢mk Ak],
then

Γ %n A = ○m1−n (Δ1 %m1 ⟦A1⟧) → · · · → ○mk−n (Δk %mk ⟦Ak⟧) → A.

Formally, it is defined as follows:

Γ %n A (Context to Implications )

· %n A ≔ A

(Γ, x : [Δ ⊢m A]) %n B ≔ Γ %n
(
○m−n

(
Δ %m ⟦A⟧

)
→ B

)
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16 Tsung-Ju Chiang

Then, a 𝜆○▷ typing judgment Γ ⊢n e : A corresponds to the CLTL formula Γ %n ⟦A⟧. We prove

that the translation is sound by induction on the typing derivations.

Lemma 5.1 (Translation Soundness). If Γ ⊢n e : A for some 𝑒 in 𝜆○▷, then ⊢ Γ %n ⟦A⟧ in CLTL.

Translation from 𝜆○▷ to 𝜆○ . We now define a translation from 𝜆○▷ to 𝜆○ , where letΔ⟨y : A⟩ =
e1 in e2 is translated into let y = ⟨𝜆Δ. $(e1)⟩ in e2 [$(y)/y]. The translation preserves types but

introduces addition beta redexes in quotations, similar to the example shown in Section 2.2. The

translation from 𝜆○▷ contexts to 𝜆○ contexts is given below, where each context entry is flattened

using the CLTL translation.

⟦Γ⟧ (Context to Context )

⟦·⟧ ≔ ·
⟦Γ, x : [Δ ⊢m A]⟧ ≔ ⟦Γ⟧, x : (Δ %m ⟦A⟧)m

We then define the term translation as follows, where ⟨e⟩n quotes e by 𝑛 times, $
n (e) splices e

by 𝑛 times, 𝝀Δ. e abstracts an unhygienic term e with respect to Δ using lambda abstractions, and

x • 𝜎 applies an variables x to each translated element in 𝜎 .

⟦e⟧ (Expression Translation )

⟦x𝜎⟧ ≔ x • 𝜎
⟦true⟧ ≔ true

⟦false⟧ ≔ false

⟦if e1 then e2 else e3⟧ ≔ if ⟦e1⟧ then ⟦e2⟧ else ⟦e3⟧
⟦𝜆Δx : A. e⟧ ≔ 𝜆x . ⟦e⟧

⟦e1 e2⟧ ≔ ⟦e1⟧ (𝝀Δ. ⟦e2⟧)
⟦⟨e⟩⟧ ≔ ⟨⟦e⟧⟩

⟦letΔ⟨x : A⟩ = e1 in e2⟧ ≔ let x = ⟨𝝀Δ. ⟦e1⟧⟩ in (⟦e2⟧[$(x)/x])
⟦wrapΔe⟧ ≔ 𝝀Δ. ⟦e⟧

⟦letwrapΔ x : A = e1 in e2⟧ ≔ let x = ⟦e1⟧ in ⟦e2⟧

𝝀Δ. e (Dependency Abstraction )

𝝀(·). e ≔ e

𝝀(Δ, x : [Δ′ ⊢m A]) . e ≔ 𝝀Δ. (𝜆x . e[$m−n x/x])

x • 𝜎 (Dependency Application )

x • (·) ≔ x

x • (𝜎, ymΔ ↦→ e) ≔ (x • 𝜎) ⟨𝝀Δ. ⟦e⟧⟩m−n

x • (𝜎, ymΔ ↦→ z) ≔ (x • 𝜎) ⟨z⟩m−n

The translation preserves typing, as stated in the following lemma:

Lemma 5.2 (⟦·⟧ preserves typing ). If Γ ⊢n e : A in 𝜆○▷ then ⟦Γ⟧ ⊢n ⟦e⟧ : ⟦A⟧ in 𝜆○ .
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5.2 CLTL to 𝜆○▷

Next, we show completeness of 𝜆○▷ with respect to CLTL through a backwards translation. Axioms

of CLTL [Kojima and Igarashi 2011] can be proved by the following terms.

K : ○(A→ B) → ○A→ ○B
K ≔ 𝜆f . 𝜆x . let ⟨f ′ : A→ B⟩ = f in let ⟨x′ : A⟩ = x in ⟨f ′ x′⟩

CK : (○A→ ○B) → ○(A→ B)
CK ≔ 𝜆f . letx:An+1 ⟨y : B⟩ = f ⟨x⟩ in ⟨𝜆x . yx ↦→x⟩

whereA and B are types staged at level𝑛+1. The ability to introduce dependencies in rule LetQuote

is crucial in the the proof of CK. This shows that the ○ fragment of our language is complete with

respect to CLTL and thus 𝜆○ .

Translation from 𝜆○ to 𝜆○▷. A direct translation from 𝜆○ to 𝜆○▷ can be done through a lifting

transformation, similar to the translation from 𝜆○ to 𝐹 ⟦⟧ described in [Xie et al. 2022]. The ability

to introduce dependencies similarly plays a crucial role in splice lifting.

6 Analytic Macros
We describe 𝜆○▷

pat
, an extension of 𝜆○▷ with code pattern matching and code rewriting, enabling

analytic macros. The full syntax, typing rules, and operational semantics are summarized in

section B.

6.1 Syntax
We extend the syntax of 𝜆○▷ with two new expression forms: if-let expressions for code pattern

matching and rewrite expressions for code rewriting.

The if letΔ⟨p⟩ = e1 then e2 else e3 expression matches the content of the code expression e1
against pattern p. It can be seen as a generalization of the letΔ⟨x : A⟩ = e1 in e2 expression in 𝜆○▷,

where 𝑥 : 𝐴 becomes a general pattern p. If the match succeeds, e2 is evaluated with the pattern

variables in p bound to the match results. Otherwise, e3 is evaluated, where the pattern variables

are not available.

The rewrite ⟨p1⟩ as e1 in e2 takes two code expressions e1 and e2, replacing occurrences of p1
with e1 in e2. p may contain pattern variables, which matches sub-expressions in e2 and are made

available in e1.

e F . . . | if letΔ⟨p⟩ = e1 then e2 else e3 | rewrite ⟨p⟩ as e1 in e2

The if-let expression differs from the multi-branch expression (match$ ) used in our code examples,

as a multi-branch expression can be desugared into nested if-let expressions, and, moreover, if-let

expressions are more convenient for formalization and ensure that the language is total.

Code patterns p are expressions with pattern variables that match sub-expressions. To distinguish

between pattern variables and regular code variables, we use 𝑥 to denote pattern variables and 𝑥 to

denote regular variables. All expression forms are allowed in patterns, including if-let and rewrite

expressions. Substitution patterns 𝜋 are used to match on substitutions, whose entries are either

variables or patterns.

p F x̂ : A | (inherits every production of e)

𝜋 F · | 𝜋, x ↦→ y | 𝜋, x ↦→ p
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18 Tsung-Ju Chiang

We use the notation Π to denote contexts of pattern variables, which is defined as a synonym

for the regular contexts Γ and Δ.

Γ,Δ,Π F · | Γ, x : [Δ ⊢n A]

6.2 Typing Rules
We extend expression typing with rule IfLet that type-checks if-let expressions and rule Rewrite

that type-checks rewrite expressions. Rule IfLet generalizes rule LetQuote by replacing the

single variable x : [Δ ⊢n+1 A] with a pattern variable context Πn+1
, which is made available in the

then-branch e2. Rule Rewrite ensures that both e1 and e2 are code expressions. The replacement

expression e1 must have the same type as the pattern p and may use pattern variables from p. The
target expression e2 may have any type, but only sub-expressions that have the same type as the

pattern p are considered for rewriting.

Γ ⊢n e : A (Expression Typing (extended) )
IfLet

Γ↾n+1;Δ
n+1 ⊢n+1 p : A { Πn+1 Γ,Δ ⊢n e1 : ○A Γ,Π ⊢n e2 : B Γ ⊢n e3 : B

Γ ⊢n if letΔ⟨p⟩ = e1 then e2 else e3 : B

Rewrite

Γ↾n+1; · ⊢n+1 p : A { Πn+1 Γ,Π ⊢n e1 : ○A Γ ⊢n e2 : ○B
Γ ⊢n rewrite ⟨p⟩ as e1 in e2 : B

The pattern typing judgement Γ;Δ ⊢n p : A { Π checks the pattern p under Γ and Δ, producing
a type A and a context of pattern variables Π. The typing context is split into Γ and Δ: Γ contains

variables from the surrounding context of the if-let expression, allowing patterns to refer to existing

variables, while Δ contains local variables introduced either by the letΔ or within the pattern p.
Separating local variables from the surrounding context ensures that each pattern variable captures

the correct dependencies. For example, in ⟨(𝜆x . ŷ) ẑ⟩, the pattern variable ŷ should capture x
since it matches on a sub-expression that may contain x, while ẑ should capture no additional

dependencies. In general, pattern variables capture exactly the variables specified in Δ.

Γ;Δ ⊢n p : A { Π (Code Pattern Typing (excerpt) )

P-PVar

Γ;Δ ⊢n (x̂ : A) : A { x : [Δ ⊢n A]

P-VarSubst1

Γ ∋ x : [Δ′ ⊢n A] Γ,Δ ⊢ 𝜎 : Δ′

Γ;Δ ⊢n x𝜎 : A { ·

P-VarSubst2

Δ ∋ x : [Δ′ ⊢n A] Γ;Δ ⊢ 𝜋 : Δ′ { Π

Γ;Δ ⊢n x𝜋 : A { Π

P-CtxAbs

Γ;Δ, x : [Δ′n+1 ⊢n A] ⊢n p : B { Π

Γ;Δ ⊢n (𝜆Δ′x : A. p) : [Δ′ ⊢ A] → B { Π

P-CtxApp

Γ;Δ ⊢n p1 : [Δ′ ⊢ A] → B { Π1 Γ;Δ,Δ′ ⊢n p2 : A { Π2

Γ;Δ ⊢n p1 p2 : B { Π1,Π2

Rule P-PVar handles the typing of pattern variables, producing a single pattern variable that

captures the local context Δ. Rules P-VarSubst1 and P-VarSubst2 handle the typing of regular

variables in Γ and Δ respectively. When matching on variables in Δ (rule P-VarSubst2), we are

allowed to further match on the substitution used with it using a substitution pattern 𝜋 . For

variables in Γ, we can only match on a constant substitution 𝜎 (rule P-VarSubst1). This is needed
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to ensure linearity of pattern variables under substitution, since variables in Γ may be substituted

with arbitrary terms. For example, consider the pattern ⟨xy ↦→ẑ⟩ where 𝑥 ∈ Γ and ẑ is a pattern
variable. When 𝑥 is substituted with a term where 𝑦 is not used linearly, such as 0 or 𝑦 +𝑦, linearity
of ẑ breaks and the pattern no longer type check.

The remaining rules are generalized from the expression typing rules, adapted to handle patterns:

• The typing context Γ is split into Γ and Δ.
• Local variables introduced in the pattern are added to Δ, while Γ remains unchanged.

• Pattern variables produced by each sub-pattern are combined into Π. Since we require

contexts to contain distinct variables, linearity is ensured.

We present rule P-CtxAbs and rule P-CtxApp as examples, with the full set of typing rules available

in section B.2. In rule P-CtxAbs, the local variable x : [Δ′ ⊢n A] is added to Δ to check the pattern

p. In rule P-CtxApp, the pattern variables produced by p1 and p2 are combined into the result.

Γ;Δ ⊢ 𝜋 : Γ′ { Π (Substitution Pattern Typing )

P-S-Empty

Γ;Δ ⊢ · : · { ·

P-S-Var

Γ;Δ ⊢ 𝜋 : Γ′ { Π Γ,Δ ∋ y : [Δ′ ⊢m A]
Γ;Δ ⊢ (𝜋, x ↦→ y) : Γ′, x : [Δ′ ⊢m A] { Π

P-S-Pattern

Γ;Δ ⊢ 𝜋 : Γ′ { Π1 Γ↾m;Δ↾m,Δ
′m ⊢m p : A { Π2

Γ;Δ ⊢ (𝜋, x ↦→ p) : Γ′, x : [Δ′ ⊢m A] { Π1,Π2

Typing rules of substitution patterns are generalized from the substitution typing rules. When the

entry is a regular variable (rule P-S-Var), we ensure that the variable exists in either Γ or Δ and

produce no pattern variables. For entries that are patterns (rule P-S-Pattern), we type-check the

pattern and collect the pattern variables it produces.

6.3 Pattern Matching
Matching is defined by the following rules as partial functions. Note that match(p; e) is defined
up to α-equivalence on e: we allow renaming of bound variables in e to match the pattern p. For
contexts introduced by 𝜆Δ, letΔ, or if letΔ, only renaming is allowed but not reordering. These

align with the De Bruijn representation used in the formalization. We present a selection of rules,

with the complete definition available in section B.3. Notably, we support matching on the full

expression syntax, including quotations, if-let and rewrite.

match(p; e) (Expression Matching (excerpt) )

match(x̂ : A; e) ≔ x ↦→ e

match(x𝜎 ; x𝜎 ) ≔ ·
match(x𝜋 ; x𝜎 ) ≔ match(𝜋 ;𝜎)

match((𝜆Δx : A. p); (𝜆Δx : A. e)) ≔ match(p; e)
match(p1 p2; e1 e2) ≔ match(p1; e1),match(p2; e2)

match(𝜋 ;𝜎) (Substitution Matching )

match(·; ·) ≔ ·
match(𝜋, x ↦→ y;𝜎, x ↦→ y) ≔ match(𝜋 ;𝜎)
match(𝜋, x ↦→ p;𝜎, x ↦→ e) ≔ match(𝜋 ;𝜎),match(p; e)
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The match functions preserves typing in the following way:

• If Γ;Δ ⊢n p : A { Π and Γ,Δ ⊢n e : A, and match(p; e) is defined, then Γ ⊢ match(p; e) : Π.
• If Γ;Δ ⊢ 𝜋 : Γ′ { Π and Γ,Δ ⊢ 𝜎 : Γ′, andmatch(𝜋 ;𝜎) is defined, then Γ ⊢ match(𝜋 ;𝜎) : Π.

6.4 Rewriting
Rewriting builds on the matching function by applying it to sub-expressions in the target expression,

replacing those that match the given pattern with a specified replacement expression. Given a

pattern Γ; · ⊢n p : A { Π, replacement expression Γ,Π ⊢n e1 : A, and target expression Γ ⊢n e2 : B,
The meta-level function rewrite(p; e1; e2) is defined as follows, producing an expression with the

same type as e2:

rewrite(p; e1; e2) (Rewriting )

rewrite(p; e1; e2) =
{
e1 [idΓ, 𝜎] if A = B and match(p; e2) = 𝜎 ,

rewriteSubterms(p; e1; e2) otherwise.

where rewriteSubterms(p; e1; e2) applies rewrite to immediate sub-expressions of e2.
The above definition rewrites all top-most occurrences of p in e2 with e1. Other strategies, such

as rewriting all occurrences from bottom to top, can also be defined:

rewriteBottomUp (p; e1; e2) = let e′
2
= rewriteSubtermsBottomUp (p; e1; e2)

in

{
e1 [idΓ, 𝜎] if A = B and match(p; e′

2
) = 𝜎 ,

e′
2

otherwise.

6.5 Substitution and Reduction
Substitution and evaluation contexts are straightforward extensions of those in 𝜆○▷.

Evaluation contexts (excerpt) E F . . . | if letΔ⟨p⟩ = E then e2 else e3
| rewrite ⟨p1⟩ as E in e2 | rewrite ⟨p1⟩ as v1 in E

The reduction rules for if-let and rewrite expressions are defined as follows, which rely on the

meta-level functions match and rewrite, respectively.

Γ ⊢n e1 −→ e2 (Reduction (excerpt) )

IfLetQuote1

match(p; e1) = 𝜎

Γ ⊢n if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→𝛽 e2 [idΓ, 𝜎]

IfLetQuote2

match(p; e1) undefined
Γ ⊢n if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→𝛽 e3

RewriteQuoteQuote

Γ ⊢n rewrite ⟨p⟩ as ⟨e1⟩ in ⟨e2⟩ −→𝛽 ⟨rewrite(p; e1; e2)⟩

The progress and preservation theorems extends to 𝜆○▷
pat

as well.
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7 Denotational Semantics
We define a Kripke-style model [Asai et al. 2014; Mitchell and Moggi 1991] for 𝜆○▷ and 𝜆○▷

pat
, where

level-𝑛 types are interpreted as sets indexed by later-stage contexts Γn+1, and level-𝑛 function types

are interpreted as functions indexed by later-stage substitutions Γ′ ⊢ 𝜎 : Γ.
We write Γ ⊢n A for the set of typed expressions, and Γ′ ⊢ Γ for the set of typed substitutions.

(Γ ⊢n A) ≔ {e | Γ ⊢n e : A} (Γ′ ⊢ Γ) ≔ {𝜎 | Γ′ ⊢ 𝜎 : Γ}

7.1 Type Interpretation
Types at level 𝑛 are interpreted as sets indexed by later-stage contexts Γn+1.

LAn MΓ (Type Interpretation )

L [Δ ⊢ A] → B MΓ ≔ ∀Γ′n+1 . (Γ′ ⊢ Γ → LA MΓ′,Δ → LB MΓ′ )
LΔ ▷A MΓ ≔ LA MΓ,Δ
L bool MΓ ≔ {True, False}
L ○A MΓ ≔ Γ ⊢n+1 A

Function types are interpreted as dependent functions, which take a later-stage substitution from

Γ to Γ′, an element in LA MΓ′,Δ, and return an element in LB MΓ′ . This definition ensures that we

can apply a later-stage substitution Γ′ ⊢ 𝜎 : Γ to the interpretation of a function type. Δ ▷A is

interpreted as the interpretation of A under the extended context Γ,Δ. bool is interpreted as the set
of booleans. ○A is interpreted as level-𝑛 + 1 expressions of type A under the context Γ.

Given a type An
, an element d ∈ LA MΓ , and a later-stage substitution Γ′ ⊢ 𝜎 : Γ, 𝑑A [𝜎] ∈ LA MΓ′

is the result of applying 𝜎 to d, which is defined recursively on the type A as follows:

𝑑𝐴 [𝜎] (Element Substitution )

𝑓 A→B [𝜎] ≔ 𝜆𝜎 ′ 𝑑. 𝑓 (𝜎 [𝜎 ′]) 𝑑
𝑑Δ▷A [𝜎] ≔ 𝑑A [𝜎, idΔ]
𝑏bool [𝜎] ≔ 𝑏

𝑒○A [𝜎] ≔ 𝑒 [𝜎]
For brevity, we write 𝑑 [𝜎] when the type A is clear from the context.

7.2 Context Interpretation
Typing contexts at level 𝑛 are interpreted as the product of the interpretations of their entries, where

each entry is interpreted differently depending on whether it’s at the current stage 𝑛. Current-stage

entries Γ ∋ x : [Δ ⊢n A] are interpreted as substitution-indexed functions from LΔ M to LA M, while
later-stage entries Γ ∋ x : [Δ ⊢m A] with𝑚 > 𝑛 are interpreted as syntactic substitution entries

Γ′ ⊢ x : [Δ ⊢m A], which can either be a variable x ↦→ y or an expression x ↦→ e.

L Γ MΓ′ (Context Interpretation (Environments) )

L Γn MΓ′ ≔
∏

Γ∋x:[Δ⊢mA]

{
∀Γ′′n+1. (Γ′′ ⊢ Γ′ → LΔ MΓ′′ → LA MΓ′′ ) if𝑚 = 𝑛,

Γ′ ⊢ x : [Δ ⊢m A] if𝑚 > 𝑛.

We write 𝜌 to denote an element in L Γ MΓ′ which we call an environment. We write 𝜌 (𝑥) to denote the
entry corresponding to 𝑥 in 𝜌 . Entries with level𝑚 > 𝑛 can in an environment 𝜌 can be combined

into a later-stage substitution, which we denote as 𝜌↾𝑛+1. Applying a later-stage substitution
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Γ′′ ⊢ 𝜎 : Γ′ to an environment 𝜌 ∈ L Γ MΓ′ is defined as follows, where the case for𝑚 = 𝑛 is defined

similarly to functions, and the case for𝑚 > 𝑛 is handled by substituting the substitution entry.

𝜌 [𝜎] (Environment Substitution )

𝜌 [𝜎] (𝑥) ≔
{
𝜆𝜎 ′ .𝜌 (𝑥) (𝜎 [𝜎 ′]) if𝑚 = 𝑛,

𝜌 (𝑥) [𝜎] if𝑚 > 𝑛,
for each Γ ∋ x : [Δ ⊢m A].

An element 𝑑 ∈ LA MΓ,Δ can be lifted to a singleton environment {x𝑛 ↦→ 𝑑} ∈ L x : [Δ ⊢n A] MΓ ,
which is defined as:

{x𝑛 ↦→ 𝑑} (Singleton Environments )

{x𝑛 ↦→ 𝑑} ≔ 𝜆𝜎 ′ . 𝑑 [𝜎 ′, 𝜌↾𝑛+1]

We write 𝜌 ∪ 𝜌 ′ to add entries to an environment, where 𝜌 ′ can either be an environment or a

later-stage substitution.

7.3 Expression Interpretation
Given any later-stage context Γ′, expressions Γ ⊢n e : A are interpreted as functions L Γ MΓ′ → LA MΓ′ ,
and substitutions Γ ⊢ 𝜎 : Δ are interpreted as functions L Γ MΓ′ → LΔ MΓ′ .

L e MΓ′ (Expression Interpretation )

L x𝜎1 MΓ′ 𝜌 ≔ 𝜌 (𝑥) idΓ′ L𝜎1 MΓ′

L true MΓ′ 𝜌 ≔ True

L false MΓ′ 𝜌 ≔ False

L if e1 then e2 else e3 MΓ′ 𝜌 ≔

{
L e2 MΓ′ 𝜌 if L e1 MΓ′ 𝜌 = True
L e3 MΓ′ 𝜌 if L e1 MΓ′ 𝜌 = False

L 𝜆Δx : A. e MΓ′ 𝜌 ≔ 𝜆𝜎 ′ 𝑑. L e MΓ′ (𝜌 [𝜎 ′] ∪ {x𝑛 ↦→ 𝑑})
L e1 e2 MΓ′ 𝜌 ≔ L e1 MΓ′ 𝜌 idΓ′ (L e2 MΓ′ (𝜌 ∪ idΔ))
L ⟨e⟩ MΓ′ 𝜌 ≔ e[𝜌↾𝑛+1]

L let ⟨Δ. x⟩ = e1 in e2 MΓ′ 𝜌 ≔ let e = L e1 MΓ′ (𝜌 ∪ idΔ) in L e2 MΓ′ (𝜌 ∪ (x ↦→ e))
LwrapΔe MΓ′ 𝜌 ≔ L e MΓ′ (𝜌 ∪ idΔ)

L letwrapΔ x : A = e1 in e2 MΓ′ 𝜌 ≔ let 𝑑 = L e1 MΓ′ 𝜌 in L e2 MΓ′ (𝜌 ∪ {x𝑛 ↦→ 𝑑})

For 𝜆○▷
pat
, the additional expression forms are interpreted as follows:

L if letΔ⟨p⟩ = e1 then e2 else e3 MΓ′ 𝜌 ≔

let e = L e1 MΓ′ (𝜌 ∪ idΔ) in
{
L e2 MΓ′ (𝜌 ∪ 𝜎) if match(p; e) = 𝜎 ,

L e3 MΓ′ 𝜌 otherwise.

L rewrite ⟨p1⟩ as e1 in e2 MΓ′ 𝜌 ≔

rewrite(p1 [𝜌↾𝑛+1]; L e1 MΓ′ (𝜌 ∪ idΠ); L e2 MΓ′ 𝜌)

Interpretation of substitutions is defined as follows, where Γ ⊢ 𝜎 : Δ and 𝜌 ∈ L Γ MΓ′ :
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L𝜎 MΓ′ (Substitution Interpretation )

(
L𝜎 MΓ′ 𝜌

)
(𝑥) ≔


𝜆𝜎 ′ 𝜌 ′ . L e MΓ′ (𝜌 [𝜎 ′] ∪ 𝜌 ′) if𝑚 = 𝑛 and 𝜎 (x) = e,
𝜌 (y) if𝑚 = 𝑛 and 𝜎 (x) = y,
𝜎1 (𝑥) [𝜌↾𝑛+1] if𝑚 > 𝑛,

for each Γ ∋ x : [Δ′ ⊢m A].

For the current-stage entries Γ ∋ x : [Δ′ ⊢n A], we want to interpret 𝜎 (x) under 𝜌 and 𝜌 ′,
which interprets Γ and Δ′ respectively. If 𝜎1 (x) is an expression Γ,Δ′ ⊢n e : A, we interpret e
using the concatenation of the two environments. Otherwise, if 𝜎 (x) is a variable y, then its

interpretation already exists in the environment 𝜌 , so we simply look it up. For the later-stage

entries Γ ∋ x : [Δ′ ⊢m A] with𝑚 > 𝑛, we apply the later-stage part of the environment 𝜌 to the

substitution entry, which ensures (L𝜎 MΓ′ 𝜌)↾𝑛+1 = (𝜎↾n+1) [𝜌↾𝑛+1].

7.4 Relation to Operational Semantics
The denotational semantics, compared to the operational semantics described in section 4, is

more compositional and guarantees termination by construction. It provides an alternative way to

evaluate expressions that is reduction-free and always terminates, by running e under the identity
environment idΓ when Γ is at level 𝑛 + 1. We expect the two semantics to be equivalent, but this

has not been formally proven. Proving adequacy of the denotational semantics with respect to the

operational semantics involves a logical relation argument, which would also establish termination

for the operational semantics.

7.5 Categorification
Categorically, the model is close to a presheaf model [Kavvos 2024] over the category of later-stage

substitutions. Refining it into a presheaf model would require proving that all operations commute

with substitution, such as 𝑑 [𝜎] [𝜎 ′] = 𝑑 [𝜎 [𝜎 ′]] for elements. We expect this to be true for the core

calculus 𝜆○▷, though it has not been formally proven. For 𝜆○▷
pat
, this depends on the definition of

match and rewrite. These refinements are left for future work.

8 Discussion
We discuss some of the design choices of our calculi and their implications.

8.1 Explicit Staging of Types
In our calculus, every type 𝐴 has a fixed stage level, This has the advantage of making staging

explicit and allows different stages to have different set of types. However, it makes types such as

A→ ○A impossible to express. One way to address this is to introduce a lifting operator on types

and contexts, which converts a type or context from stage 𝑛 to stage 𝑛 + 1, such as follows:

(bool)+ = bool

( [Δ ⊢ A] → B)+ = [Δ+ ⊢ A+] → B+

(○A)+ = ○(A+)
(Δ ▷A)+ = (Δ+) ▷ (A+)

(·)+ = ·
(Γ, x : [Δ ⊢m A])+ = Γ+, x : [Δ+ ⊢m+1 A+]
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Then, we can express types such as A→ ○(A+). Alternatively, we can make staging of every Δ in

a type relative, then we recover the ability to use A at different stages, but at the cost of making

staging implicit and assuming uniformity of types across stages.

8.2 Multistage Dependencies
Multistage dependencies correspond to nested splices in the quasi-quoting syntax. For example,

consider the following expression:

⟨𝜆x1. ⟨𝜆x2. $($(e0))⟩⟩

where x1 is a stage-1 variable, x2 is a stage-2 variable, and e0 is a stage-0 expression that depends

on x1 and x2. The expression is equivalent to

letΔ⟨y1 : C⟩ = e0 in ⟨𝜆x1 . letx2:B2 ⟨y2 : C⟩ = y1idΔ in ⟨𝜆x2. y2x2 ↦→x2⟩⟩

in our calculus, where Δ = (x1 : A1, x2 : B2) is a multistage dependency context.

8.3 Let-splice vs. Splice
Our calculi use the let ⟨x : A⟩ = e1 in e2 syntax instead of the traditional in-place splicing syntax

$(e). As discussed in section 1, the let-splice syntax makes the evaluation order explicit and allows

finer control. It also naturally extends to the pattern matching syntax if let ⟨p⟩ = ⟨e1⟩ then e2 else e3.
However, let-splice syntax can be more verbose in simple cases compared to the traditional splice

syntax. We believe the traditional splice syntax could be added to our calculi, at least as syntactic

sugar translated into let-splice through a lifting transformation similar to the one in [Xie et al.

2022]. Extending the type system to support both syntaxes is left for future work.

8.4 Unhygienic Function and Value Types
In our core calculus, we included an unhygienic function type [Δ ⊢ A] → B and an unhygienic

value type Δ ▷A. The two types are interconvertible via the following functions:

wrapToArr : (Δ ▷A→ B) → ([Δ ⊢ A] → B)
wrapToArr ≔ 𝜆f . 𝜆Δx : A. f (wrapΔxidΔ )
arrToWrap : ( [Δ ⊢ A] → B) → (Δ ▷A→ B)
arrToWrap ≔ 𝜆f . 𝜆x : (Δ ▷A). f (letwrapΔ y : A = x in yidΔ )

The unhygienic function type is useful for expressing unhygienic macros, since it does not require

explicit wrapping and unwrapping. On the other hand, the unhygienic value type allows unhygienic

values to be used as a first-class citizen in the language and be stored in data structures. Without it,

we can only annotate unhygienic dependencies on variables and definitions, but not on values. For

example, (Δ ▷A) × (Δ′ ▷B) would not be possible without the unhygienic value type.

8.5 Code Pattern Matching and Confluence
We note that 𝜆○▷

pat
is not confluent if we were to allow reducing under let-bindings. For example,

consider the following expression:

let ⟨x : bool⟩ = ⟨true⟩ in (if let ⟨true⟩ = ⟨x⟩ then 1 else 0)

If the outer let-binding reduces first, we get if let ⟨true⟩ = ⟨true⟩ then 1 else 0 which reduces to 1.

If the inner if-let reduces first, the pattern match fails, and we get let ⟨x : bool⟩ = ⟨true⟩ in 0 , which
reduces to 0. This is partly due to our mixed treatment of meta-variables and quoted variables, so

we cannot distinguish between the two in the pattern match.
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8.6 Substitution Patterns
As mentioned in section 6.2, we only allow using substitution patterns with variables that are

introduced locally to avoid breaking linearity of patterns variables under substitution. Allowing

substitution patterns with non-local variables however, seems to allow patterns to be programmed

using substitution. For example, consider the pattern ⟨xy ↦→ẑ:int⟩. Substituting x with y + 2 or y + y
would produce ⟨ẑ : int + 2⟩ or ⟨ẑ : int + ẑ : int⟩ respectively, which seems to be a useful feature as

long as we can ensure y is used at least once in the pattern. This would involve integrating linearity

into our type system, which could be a possible direction for future work.

9 Formalization
We formalize the syntax, typing rules, operational semantics, safety properties, and translation of

our calculi in Agda. Our formalization relies on the agda-stdlib library [The Agda Community

2024] and follows the style of Programming Language Foundations in Agda [Wadler et al. 2022]. It is

structured in the following way:

• Everything : Imports all modules and serves as an index.

• Data.StagedList and Data.StagedTree : Define intrinsically well-staged lists and rose

trees, respectively. They are developed in a self-contained and reusable manner, so they can

be used in other projects that require well-staged data structures. In our formalization, they

are used to represent the nested structure of our typing context.

• Core.* , CtxArr2.* , CtxTyp.* , and Pat.* : Formalizes different variants of our calculi.

The Core.* modules define a minimal calculus with only the ○ modality; the CtxArr2.*

modules define a calculus with the unhygienic function type but without the unhygienic

value type; the CtxTyp.* modules formalize 𝜆○▷ in full; the Pat.* modules formalize 𝜆○▷
pat

.

Each of them contains the following submodules:

– Context : Defines types and typing contexts.

– Term : Defines intrinsically typed terms using de Bruijn indices.

– Depth : Defines the depth of contexts and substitutions.

– Substitution : Defines substitution.

– Reduction : Defines the operational semantics and proves safety properties.

– Examples : Contains examples of typable terms in the calculus and their evaluation

results.

– Denotational : Defines the Kripke-style denotational semantics.

Additionally, the Pat modules contain the following submodules:

– Context.Equality , Term.Equality : Defines decidable equality for contexts and terms.

– Matching : Defines the pattern matching function.

– Rewrite : Defines the rewrite function.

• Splice.* : Formalizes the translation from 𝜆○▷ to 𝜆○ . It contains the following submodules:

– Context , Term : Defines types and terms in 𝜆○ .

– Translation : Defines the translation function.

All modules are checked with the safe flag to ensure soundness. Most are also checked with

without-K , except for the Pat modules where we use K to simplify the proofs of decidable equality.

There are a few differences between the formalization and the presentation in this paper: in the

formalization, all contexts and types are intrinsically well-staged, and all expressions are intrinsically

typed. Variables are represented namelessly using de Bruijn indices. These simplifications make

the formalization more concise and ensure that pattern matching respects α-equivalence.
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10 Related Work
We compare our calculus with related work. Table 2 compares the syntax, type system, and features

of our calculus with similar calculi.

𝜆○▷, 𝜆○▷
pat

𝜆○ 𝐹 ⟦⟧ (Haskell) Mœbius 𝜆▲ (Scala 3) 𝜆{} (Squid)

Quoting ⟨·⟩ next ⟦·⟧ box ⌈·⌉ ⌈·⌉
Unquoting let ⟨·⟩ prev $(·) let box ⌊·⌋ ⌊·⌋
Code Type ○ ○ Code ⌈Φ ⊢𝑘 ·⌉ ⌈·⌉ Code𝑇 𝐶

Contextual Yes – – Yes – Yes

Nested Yes No 1 level Yes No No

Polymorphism No No Yes Yes No Subtyping

Analytic Macros Yes – – Yes Yes Yes

Rewrite Yes – – – – Yes

Table 2. Comparison of our calculus with related work

10.1 Typed Template Haskell
Our calculus is directly inspired by the 𝐹 ⟦⟧ core calculus of Typed Template Haskell [Xie et al.

2022]. Below, we discuss the relationship between 𝐹 ⟦⟧ and our calculus.

In 𝐹 ⟦⟧, let-splice bindings appear in the form of ⟦𝑒⟧𝜙 , where 𝑒 is a quoted expression and 𝜙 is a

list of let-splice bindings. This is similar to tying the let-splice bindings to the quote construct in

our calculus. Since 𝐹 ⟦⟧ is intended as a translation target for a quote-and-splice language and all

let-splice bindings are lifted during translation, this design choice is natural. In our calculus, we

allow let-splice bindings to appear separately from the quote construct, allowing them to be used

more flexibly.

Another difference is that 𝐹 ⟦⟧ context only allows a single level of nesting. Again, this is a natural
choice for a translation target for a quote-and-splice language, since the context only needs to track

the variable dependencies that are captured by splices. In our calculus, we allow arbitrary nested

contexts to support more complex macro signatures and dependency relations. This makes our

calculus more expressive but also more complex to reason about. Also, as discussed in section 4.2,

it also requires us to introduce delayed substitutions to ensure progress.

We expect the convenience of simply capturing dependencies from the context can be recovered

in the surface syntax by automatically generating identity substitutions for the unspecified depen-

dencies. This way, the user can write the code in a more concise way while still having the full

power of the calculus.

10.2 S4
In addition to the temporal logic approach, another logic that has been used in the context of

meta-programming is the S4 modal logic [Pfenning and Davies 2001], which can be axiomatized as

follows:

Axioms
• any intuitionistic tautology instance

• K : □(A→ B) → □A→ □B
• T : □A→ A
• 4 : □A→ □(□A)

Rules
• If A→ B and A, then B.
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• If A, then □A.

When interpreted as a type system, the box modality □A models closed code expressions that do not

depend on the surrounding context, in contrast to the temporal ○A which allows code to reference

variables in the surrounding context. The T axiom corresponds to evaluation of closed expressions,

and 4 corresponds to self-quoting.

The relationship between 𝜆○ , 𝐹 ⟦⟧, and 𝜆○▷ mirrors the different derivation systems of the intu-

itionistic S4 logic. 𝜆○ corresponds to Pfenning and Davies’s implicit system which uses quote and

unquote operators similar to quasi-quotes, 𝐹 ⟦⟧ corresponds to the style of [Bierman and de Paiva

2000] which pairs an explicit substitution with the quote constructor, and 𝜆○▷ corresponds to

Pfenning and Davies’s implicit system which uses let-bindings for unquoting. In literature, the

implicit system is sometimes called Kripke-style or Fitch-style [Clouston 2018; Murase 2017; Murase

et al. 2023], while the explicit system is sometimes called the dual-context style [Kavvos 2020;

Nanevski et al. 2008].

10.3 Contextual Modal Type Theory and Mœbius
Contextual modal type theory (CMTT) [Nanevski et al. 2008] extends the S4 approach with contextual
modalities, which generalizes the □ type to allow code to depend on a specified context, representing

open code expressions. Mœbius [Boespflug and Pientka 2011; Jang et al. 2022] further extends

CMTT into multiple levels, modeling meta
𝑛
-variables in multi-stage programming. Our type system

is highly inspired by Mœbius. While the two systems are based on different logical foundations

and have different approaches to context tracking, some aspects, such as typing rules for delayed

substitutions, are strikingly similar. Here, we outline the key differences between our system and

Mœbius.

Logical foundation Our system is based on temporal logic, while Mœbius is gereralized

from S4.

Separation of modalities We separate the code modality ○ and the contextual modality

Δ ▷ , while Mœbius combines them into a single modality ⌈Φ ⊢𝑘 ·⌉.
Treatment of meta-variables In our system, meta-variables and program variables are both

treated as variables at the next level. In Mœbius, meta-variables are treated separately from

program variables.

In Mœbius and CMTT, the code type ⌈Φ ⊢𝑘 𝐴⌉ explicitly declares all variables that the code may

refer to. This design makes code evaluation possible because a code of type ⌈· ⊢𝑘 𝐴⌉ is guaranteed
to contain no free variables.

In contrast, the temporal code type ○A allows code to reference any later-stage variables in the

surrounding context without explicit declaring them. For instance, a macro 𝑓 : ○int→ ○int can
be used as 𝜆x : int. $(f ⟨x + 1⟩) , where the variable x is introduced at the use site and not known

to the macro’s definition.

Our calculus build on this by taking an additive approach to context tracking, where a value

of type Δ ▷A can use variables in Δ in addition to those in the surrounding context. This allows

depdencies that does not follow lexical scoping to be specified, which is essential for expressing

unhygienic macros. Moreover, it enhances the expressiveness of the type system by allowing context

specifications to be mixed with other type constructors. For instance, (x : bool1) ▷ (A × ○B) could
represent an unhygienic value of type A paired with a code of type B that both use a variable x.

10.3.1 Extending 𝜆○▷ with S4-style code types. To extend our calculus with the ability to restrict

contexts, we can add a third modal type □A which restricts the context to be empty. Semantically,

, Vol. 1, No. 1, Article . Publication date: January 2025.



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Tsung-Ju Chiang

it can be interpreted as

L□A MΓ ≔ LA M· ← the empty context

Using this, the S4 code type can be expressed as □○A, which prcisely represents closed code

expressions that does not depend on the surrounding context Γ.

L□○A MΓ = · ⊢n+1 A

Code expressions which do not depend on the surrounding context can be shifted [Xie et al. 2023]

across levels by adjusting the level annotaions. Therefore, □○A+ → A can be implemented by

shifting the input expression down by one level and then evaluating it, where A+ adds 1 to all level

annotations in A as defined in section 8.1. Similarly, □○A→ □○(□○A+) can be implemented by

shifting the input expression up by one level and then quoting it. These properties suggests that

□○A indeed satisfies the S4 axioms. Developing a full λ-calculus with this extension would require

a more sophisticated type system to handle the interaction between □ and ○, which is left for future

work. The Mœbius contextual type ⌈Φ ⊢𝑘 𝐴⌉ is similar to □(Φ▷○A) in this setting. However, there

are some differences in how the levels are managed, since they carry different meanings in the

two systems. In Mœbius, Φ contains variables with levels smaller than 𝑘 , while in our system the

context contains variables with levels greater than 𝑛.

10.4 Polymorphic Contexts
Murase et al. observed that 𝜆○ types can be embedded into a contextual modal type theory extended

with polymorphic contexts [Murase et al. 2023]. This is similar to viewing the type interpretation

function LA MΓ from section 7 as a syntactic translation into CMTT types, where the ∀Γ quantifi-

cation is replaced by ∀𝛾 , an abstraction over context variables, and the ○ type is translated into

CMTT code type under the given context. That is:

L [Δ ⊢ A] → B MΓ ≔ ∀𝛾 . (𝛾 ⊢ Γ) → LA M𝛾,Δ → LB M𝛾 (𝛾 fresh)
L ○A MΓ ≔ ⌈Γ ⊢ 𝐴⌉

where 𝛾 is a polymorphic context variable, and Γ may include such variables. This is another

promising direction for integrating our calculus with contextual modal type theory.

10.5 Nested Sequents
The nested context design in our calculus is similar to nested sequents [Guenot 2013], which has

been studied in the context of explicit substitutions and deep inference. Our type system extends

this idea by adding stage levels for bind-time tracking, while using a shallow inference system to

keep the expression syntax close to the λ-calculus.

10.6 Multimodal Type Theory
Multimodal Type Theory [Gratzer et al. 2020; Kavvos and Gratzer 2023] provides a general framework

for combining multiple modal types in a single type system. 𝜆○▷ can be seen as a multimodal type

system with modalities ○ and Δ ▷ for each context Δ. Several aspects of our type system, such as

having a modal function type and using let-bindings to integrate multiple modalities, also appear

in multimodal type theory. The main difference is that multimodal type theory uses Fitch-style

syntactical locks � to control variable usage, while our calculus modifies the context directly using

the restriction operator (Γ↾n+1) and extension (Γ,Δ). Specifying our calculus as a multimodal system

would be an interesting direction for future work.
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10.7 𝜆▲

Our treatment of analytic macros is similar to that of 𝜆▲ [Stucki et al. 2021]. In 𝜆▲ , the typing

context is not nested, so whenmatching a term under a lambda, the result must be first “η-expanded”

into a function that takes the code of the dependencies as arguments. For example, in our language,

the pattern variable 𝑥 in ⟨𝜆y : A. x̂ : B⟩ has type x : [y : A1 ⊢1 B], whereas in 𝜆▲ it would have

type ○A→ ○B. This design simplifies the type system, but as noted by Stucki et al., it only works

for a simpler two-stage settings and does not support matching on multi-staged meta-programs.

We extend 𝜆▲’s approach in two ways: First, the nested structure of our type system allows

us to directly type the match result as Γ ⊢ 𝜎 : Π, avoiding the need for η-expansion. Second, the

translation to 𝜆○ developed in section 5.1 generalizes 𝜆▲’s η-expansion technique to multi-stage

programs: For a match result with type Γ ⊢ 𝜎 : Π in our calculus, one can translate each item in 𝜎

using the expression translation function, resulting in a list of items with purely temporal type

⟦Π⟧ which can be directly typed in 𝜆▲ .

10.8 𝜆{} and Squid
The rewriting feature in our calculus is inspired by Squid [Parreaux et al. 2017], which is another

macro system for Scala with a different type system and feature set. While our type system is

quite different from Squid’s, the expression syntax for analytic macros is similar. Our if let ⟨p⟩ =
e1 then e2 else e3 is similar to writing e1 match ⌈𝑝⌉ ⇒ e2 else e3 in Squid, and rewrite ⟨p⟩ as e1 in e2
is similar to writing e2 rewrite ⌈𝑝⌉ ⇒ e1 in Squid.

11 Conclusion
Correctly tracking binding-time and variable dependencies is essential for the expressiveness

of a typed meta-programming language. We introduced a novel approach to this problem using

a nested context design combined with temporal-style staging. The approach flexibly supports

multiple meta-programming idioms, including explicit splice definition, unhygienic macros, and

code pattern matching. We also compared our approach with contextual modal type theory-based

systems in section 10, highlighting several potential directions for future work on integrating these

frameworks.
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A 𝜆○▷ Details
A.1 Syntax

Variables x, y, z
Levels m, n ∈ N
Types A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A
Contexts Γ,Δ F · | Γ, x : [Δ ⊢n A]
Expressions e F x𝜎 | true | false | if e1 then e2 else e3

| 𝜆Δx : A. e | e1 e2 | ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2
| wrapΔe | letwrapΔ x : A = e1 in e2

Substitutions 𝜎 F · | 𝜎, x ↦→ y | 𝜎, x ↦→ e

Fig. 1. Syntax of 𝜆○▷
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B 𝜆○▷
pat

Details
B.1 Syntax

Variables x, y, z
Levels m, n ∈ N
Types A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A
Contexts Γ,Δ,Π F · | Γ, x : [Δ ⊢n A]
Expressions e F x𝜎 | true | false | if e1 then e2 else e3

| 𝜆Δx : A. e | e1 e2 | ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2
| wrapΔe | letwrapΔ x : A = e1 in e2
| if letΔ⟨p⟩ = e1 then e2 else e3 | rewrite ⟨p⟩ as e1 in e2

Patterns p F x : A | x𝜋 | true | false | if p1 then p2 else p3
| 𝜆Δx : A. p | p1 p2 | ⟨p⟩ | letΔ⟨x : A⟩ = p1 in p2
| wrapΔp | letwrapΔ x : A = p1 in p2
| if letΔ⟨p⟩ = p1 then p2 else p3 | rewrite ⟨p⟩ as p1 in p2

Substitutions 𝜎 F · | 𝜎, x ↦→ y | 𝜎, x ↦→ e
Substitution Patterns 𝜋 F · | 𝜋, x ↦→ y | 𝜋, x ↦→ p

Fig. 2. Syntax of 𝜆○▷
pat

B.2 Typing Rules

Γ ⊢n e : A (Expression Typing )

VarSubst

Γ ∋ x : [Δ ⊢n A] Γ ⊢ 𝜎 : Δ

Γ ⊢n x𝜎 : A

True

Γ ⊢n true : bool

False

Γ ⊢n false : bool

If

Γ ⊢n e1 : bool Γ ⊢n e2 : A Γ ⊢n e3 : A
Γ ⊢n if e1 then e2 else e3 : A

CtxAbs

Γ, x : [Δn+1 ⊢n A] ⊢n e : B
Γ ⊢n 𝜆Δx : A. e : [Δ ⊢ A] → B

CtxApp

Γ ⊢n e1 : [Δn+1 ⊢ A] → B Γ,Δ ⊢n e2 : A
Γ ⊢n e1 e2 : B

Quote

Γ↾n+1 ⊢n+1 e : A
Γ ⊢n ⟨e⟩ : ○A

LetQuote

Γ,Δn+1 ⊢n e1 : ○A Γ, x : [Δ ⊢n+1 A] ⊢n e2 : B
Γ ⊢n letΔ⟨x : A⟩ = e1 in e2 : B

Wrap

Γ,Δn+1 ⊢n e : A
Γ ⊢n wrapΔe : Δ ▷A

LetWrap

Γ ⊢n e1 : Δ ▷A Γ, x : [Δ ⊢n A] ⊢n e2 : B
Γ ⊢n letwrapΔ x : A = e1 in e2 : B
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IfLet

Γ↾n+1;Δ
n+1 ⊢n+1 p : A { Πn+1 Γ,Δ ⊢n e1 : ○A Γ,Π ⊢n e2 : B Γ ⊢n e3 : B

Γ ⊢n if letΔ⟨p⟩ = e1 then e2 else e3 : B

Rewrite

Γ↾n+1; · ⊢n+1 p : A { Πn+1 Γ,Π ⊢n e1 : ○A Γ ⊢n e2 : ○B
Γ ⊢n rewrite ⟨p⟩ as e1 in e2 : B

Γ ⊢ 𝜎 : Γ′ (Substitution Typing )

S-Empty

Γ ⊢ · : ·

S-Rename

Γ ⊢ 𝜎 : Γ′ Γ ∋ y : [Δ ⊢m A]
Γ ⊢ (𝜎, x ↦→ y) : Γ′, x : [Δ ⊢m A]

S-Subst

Γ ⊢ 𝜎 : Γ′ Γ↾m,Δ ⊢m e : A

Γ ⊢ (𝜎, x ↦→ e) : Γ′, x : [Δ ⊢m A]

Γ;Δ ⊢n p : A { Π (Pattern Typing )

P-PVar

Γ;Δ ⊢n (x̂ : A) : A { x : [Δ ⊢n A]

P-VarSubst1

Γ ∋ x : [Δ′ ⊢n A] Γ,Δ ⊢ 𝜎 : Δ′

Γ;Δ ⊢n x𝜎 : A { ·

P-VarSubst2

Δ ∋ x : [Δ′ ⊢n A] Γ;Δ ⊢ 𝜋 : Δ′ { Π

Γ;Δ ⊢n x𝜋 : A { Π

P-If

Γ;Δ ⊢n p1 : bool { Π1 Γ;Δ ⊢n p2 : A { Π2 Γ;Δ ⊢n p3 : A { Π3

Γ;Δ ⊢n if p1 then p2 else p3 : A { Π1,Π2,Π3

P-True

Γ;Δ ⊢n true : bool { ·

P-False

Γ;Δ ⊢n false : bool { ·

P-CtxAbs

Γ;Δ, x : [Δ′n+1 ⊢n A] ⊢n p : B { Π

Γ;Δ ⊢n (𝜆Δ′x : A. p) : [Δ′ ⊢ A] → B { Π

P-CtxApp

Γ;Δ ⊢n p1 : [Δ′ ⊢ A] → B { Π1 Γ;Δ,Δ′ ⊢n p2 : A { Π2

Γ;Δ ⊢n p1 p2 : B { Π1,Π2

P-Quote

Γ↾n+1;Δ↾n+1 ⊢n+1 p : A { Πn+1

Γ;Δ ⊢n ⟨p⟩ : ○A { Π

P-LetQuote

Γ;Δ,Δ′ ⊢n p1 : ○A { Π1 Γ;Δ, x : [Δ′ ⊢n+1 A] ⊢n p2 : B { Π2

Γ;Δ ⊢n letΔ′ ⟨x : A⟩ = p1 in p2 : B { Π1,Π2
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P-Wrap

Γ;Δ,Δ′ ⊢n p : A { Π

Γ;Δ ⊢n wrapΔ′p : Δ′ ▷A { Π

P-LetWrap

Γ;Δ ⊢n p1 : Δ′ ▷A { Π1 Γ;Δ, x : [Δ′ ⊢n A] ⊢n p2 : B { Π2

Γ;Δ ⊢n letwrapΔ′ x : A = p1 in p2 : B { Π1,Π2

P-IfLet

(Γ,Δ)↾n+1;Δ′ ⊢n+1 p : A { Π
Γ;Δ,Δ′ ⊢n p1 : ○A { Π1 Γ;Δ,Π ⊢n p2 : B { Π2 Γ;Δ ⊢n p3 : B { Π3

Γ;Δ ⊢n if letΔ′ ⟨p⟩ = p1 then p2 else p3 : B { Π1,Π2,Π3

P-Rewrite

(Γ,Δ)↾n+1; · ⊢n+1 p : A { Π Γ;Δ,Π ⊢n p1 : ○A { Π1 Γ;Δ ⊢n p2 : B { Π2

Γ;Δ ⊢n rewrite ⟨p⟩ as p1 in p2 : B { Π1,Π2

Γ;Δ ⊢ 𝜋 : Γ′ { Π (Sustitution Pattern Typing )

P-S-Empty

Γ;Δ ⊢ · : · { ·

P-S-Var

Γ;Δ ⊢ 𝜋 : Γ′ { Π Γ,Δ ∋ y : [Δ′ ⊢m A]
Γ;Δ ⊢ (𝜋, x ↦→ y) : Γ′, x : [Δ′ ⊢m A] { Π

P-S-Pattern

Γ;Δ ⊢ 𝜋 : Γ′ { Π1 Γ↾m;Δ↾m,Δ
′m ⊢m p : A { Π2

Γ;Δ ⊢ (𝜋, x ↦→ p) : Γ′, x : [Δ′ ⊢m A] { Π1,Π2

B.3 Pattern Matching

match(p; e) (Expression Matching )

match(x̂ : A; e) ≔ x ↦→ e

match(x𝜎 ; x𝜎 ) ≔ ·
match(x𝜋 ; x𝜎 ) ≔ match(𝜋 ;𝜎)

match(true; true) ≔ ·
match(false; false) ≔ ·

match(if p1 then p2 else p3;
if e1 then e2 else e3) ≔ match(p1; e1),match(p2; e2),match(p3; e3)

match((𝜆Δx : A. p); (𝜆Δx : A. e)) ≔ match(p; e)
match(p1 p2; e1 e2) ≔ match(p1; e1),match(p2; e2)

match(⟨p⟩; ⟨e⟩) ≔ match(p; e)
match(letΔ⟨x : A⟩ = p1 in p2;

letΔ⟨x : A⟩ = e1 in e2) ≔ match(p1; e1),match(p2; e2)
match(wrapΔp;wrapΔe) ≔ match(p; e)

match(letwrapΔ x : A = p1 in p2;
letwrapΔ x : A = e1 in e2) ≔ match(p1; e1),match(p2; e2)

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#_%E2%88%A3_%E2%8A%A9_%E2%86%9D_
https://tsung-ju.org/masters-thesis/agda/Pat.Matching.html#match


1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Tsung-Ju Chiang

match(if letΔ⟨p⟩ = p1 then p2 else p3;
if letΔ⟨p⟩ = e1 then e2 else e3) ≔ match(p1; e1),match(p2; e2),match(p3; e3)
match(rewrite ⟨p⟩ as p1 in p2;

rewrite ⟨p⟩ as e1 in e2) ≔ match(p1; e1),match(p2; e2)

match(𝜋 ;𝜎) (Substitution Matching )

match(·; ·) ≔ ·
match(𝜋, x ↦→ y;𝜎, x ↦→ y) ≔ match(𝜋 ;𝜎)
match(𝜋, x ↦→ p;𝜎, x ↦→ e) ≔ match(𝜋 ;𝜎),match(p; e)
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