
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Typed Meta-Programming with Splice Variables

TSUNG-JU CHIANG

Typed meta-programming catches meta-programming errors early by checking them at definition time. This

paper introduces 𝜆○▷, a typed meta-programming language that uses nested context design and temporal-style

staging to track binding times and variable dependencies. The system supports a range of meta-programming

idioms, including explicit splice definitions, unhygienic macros and analytic macros. We formalize the language

in Agda, prove its safety propertes, define a denotational semantics to clarify the meaning of its types, and

show its soundness and completeness with respect to constructive linear-time temporal logic through type-

preserving translations. We compare our approach to contextual modal type theory-based systems, providing

insights into their similarities and differences.

ACM Reference Format:
Tsung-Ju Chiang. 2025. Typed Meta-Programming with Splice Variables. 1, 1 (January 2025), 34 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Meta-programming allows programs to analyze and generate code at compile time, enabling flexible

abstractions while reducing runtime overhead. Typed meta-programming integrates type and scope

checking of code expressions into the type system, allowing meta programs to be specified with

precise types and checked at definition time. This makes meta-programming more predictable,

helping catch errors early and improving the overall programming experience.

A popular approach to typed meta-programming is based on temporal logic [Davies 1996], which
has been used in various languages including OCaml [Kiselyov 2014; Xie et al. 2023], Scala [Stucki

et al. 2018, 2021], and Haskell [Sheard and Jones 2002]. The temporal “next” operator ○ acts as a

type constructor for typed code expressions, accompanied by quoting and splicing operators similar

to Lisp’s quasi-quote mechanism. This allows meta-programs to be written in the same language as

the programs they generate, making them more intuitive and easier to reason about.

While the quote-and-splice syntax offers a powerful mechanism for meta-programming, it can

be restrictive in certain cases. For example, precisely controlling the evaluation order of splice

expressions can be challenging. Recently, Typed Template Haskell [Xie et al. 2022] addressed

this issue by translating splices into a sequence of definitions within a core calculus, allowing

the evaluation order of splice expressions to be explicitly specified. However, the core calculus is

intended as an intermediate compilation target, not for direct use by the programmers.

In this paper, we introduce let-splice bindings, a language construct that explicitly defines splice

expressions within a surface language. Unlike the quote-and-splice mechanisms, let-splice bindings

offer precise control over splice evaluation order. Compared to Xie et al. [2022], let-splice bindings

are more flexible and enable the sharing and reuse of splice computations across different contexts.

Our design incorporates a novel type system that tracks variable dependencies of splice definitions,
allowing splice expressions to be defined in a context where certain variables are not yet available.

Author’s Contact Information: Tsung-Ju Chiang.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2025/1-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Tsung-Ju Chiang

Inspired by Contextual Model Type Theory (CMTT) [Jang et al. 2022; Nanevski et al. 2008], the type

system associates let-splice bindings with a typing context to capture these variable dependencies,

ensuring well-typedness of splice definitions. When a splice variable is used, the corresponding

dependencies must be provided. Those contexts can also be nested to specify more complex

dependencies. While the type system shares similarities with CMTT, it diverges in its logical

foundation (i.e. temporal logic) as well as its treatment of variable dependency tracking; a detailed

comparison with related work is provided in Section 10. Furthermore, as we will show, our design

serves as a basis for more advancedmeta-programming features, such as unhygienic macros [Barzilay
et al. 2011] and code pattern matching [Stucki et al. 2021], both of which require similar mechanisms

for managing variable dependencies. Our system naturally supports these features, demonstrating

its expressiveness and potential for future language extensions.

More specifically, we present two calculi: 𝜆○▷, a temporal-style multi-stage calculus supporting

let-splice bindings, featuring a novel contextual modality (Δ▷) for managing variable dependencies;

and 𝜆○▷
pat

, an extension of 𝜆○▷which seamlessly integrates code pattern matching and code rewriting.

For both calculi, we define a small-step operational semantics and a denotational semantics based

on a Kripke-style model. We prove soundness and completeness of our type system with respect to

constructive linear-time temporal logic [Kojima and Igarashi 2011]. Both calculi are fully formalized

in the Agda proof assistant, along with all the proofs. Each formalized definition and property is

marked with a clickable icon, linking to the corresponding Agda definition.

We offer the following contributions:

(1) Section 3 and 4 present a novel calculus 𝜆○▷ with let-splice bindings. It features dependency

tracking with nested typing context, a temporal-style code type for code expressions, and a

separate contextual modality for managing variable dependencies.

(2) Section 5 provides a type-preserving translation from 𝜆○▷ to constructive linear-time tem-

poral logic [Kojima and Igarashi 2011] and then to 𝜆○ [Davies 1996], offering insight into

their relationship.

(3) Section 6 introduces 𝜆○▷
pat
, an extension of 𝜆○▷ that allows for pattern matching on code,

allowing for inspection and rewriting of code fragments.

(4) Section 7 defines a denotational semantics for 𝜆○▷ and 𝜆○▷
pat

using a Kripke-style model.

(5) We formalize 𝜆○▷ and 𝜆○▷
pat

in the Agda proof assistant, and establish key properties and

theorems including progress and preservation.

Lastly, section 10 compares our approach to related work, including CMTT-based calculi [Jang et al.

2022], highlighting the differences in logical foundations and variable dependency tracking.

2 Motivation and Examples
In this section we outline the design of our calculus, and then demonstrate its expressiveness

through three examples: reuse of splice variables, unhygienic macros for anaphoric conditionals,

and pattern matching on code.

2.1 Staged Power Function
A classic example of code generation is the staged power function. Given a quoted expression

<e> and a known integer n , this function generates the expression <e * ... * e * 1> with 𝑛

repeated multiplications, avoiding recursion and thus reducing the overhead for any specific e . An

implementation using the traditional quote-and-splice syntax can be written as follows:

let power : int
1
code → int

0 → int
1
code

let rec power e n =

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Everything.html

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Typed Meta-Programming with Splice Variables 3

if n == 0 then <1>
else <$(e) * $(power e (n - 1))>

let power5 x = $(power <x> 5) -- generates (x * x * x * x * x * 1)

where a quotation <expr> represents the code fragment of the expression, and a splice $(expr)

extracts out the expression from the code fragment. Following Typed Template Haskell [Xie et al.

2022], power5 uses top-level splices (i.e. splices without surrounding quotations) for compile-time

code generation. For clarity, we annotate base types with superscripts to indicate their evaluation

stages, where 0 represents compile-time and 1 represents runtime. For example, int0 denotes a

compile-time integer and int
1 denotes a runtime integer. Code expressions have a code type;

therefore, int1 code represents a quoted expression of a runtime integer.

While the quote-and-splice syntax is useful, it can also introduce complexities. Specifically,

the evaluation order of splice expressions can be unclear. For example, evaluating the expression

(e1 <e2 $(e3)>) will first evaluate e1 and then e3 , but not e2 . This requires a level-indexed
reduction relation [] that keeps track of the relative number of quotations and splices during

evaluation, adding complexity to both the implementation and the meta-theory. Moreover, in the

context of compile-time code generation, it raises the question of how to evaluate nested splices, e.g.

$(e1) $($(e2)) , where e1 appears first, but e2 has more splices. Typed Template Haskell will

evaluate e2 before e1 , while both Scala [Stucki et al. 2018] and OCaml [Xie et al. 2023] disallow

nested splices.

Our design introduces novel let-splice bindings that make splice definitions explicitly. In particular,

an implementation of the staged power function using our syntax can be written as:

let power : int
1
code → int

0 → int
1
code

let rec power e n =

if n == 0 then <1>
else

let$ s1 : int
1
= e in -- lifted

let$ s2 : int
1
= power e (n - 1) in -- lifted

<s1 * s2>

In our calculus, the splicing operation is replaced instead by let-splice bindings (let$), which bind

a code expression to a splice variable. In this case, the splice variables s1 and s2 represent the

splice of e and of power e (n - 1) , respectively. Since both variables represent splice expressions,

they can be directly used as s1 * s2 within the quotation. Formally, quotations, let-splices, and

splice variables are all managed by levels. As shown in this example, splice variables with explicit

dependencies clarify the order in which splices are computed.

In this particular case, the two splice definitions do not capture any free variables. More inter-

estingly, definitions can be annotated with a list of variable dependencies. This provides flexibility
since splice expressions can depend on values that are only available when the splice variable is

used. For example, we have:

let$ s3 : (x : int
1 ⊢ int

1
) = power <x> 5 -- lifted, with x as dependency

let power5 x = s3 with x = x

As the original top-level splice $(power <x> 5) refers to the variable x , the splice variable s3 is

given type (x : int
1 ⊢ int

1
) , allowing x:int

1 to be used within its definition. When using a

splice variable like s3 , the syntax (s3 with x = x) provides a delayed substitution. This allows
us to replace the variable dependencies with concrete values. For clarity, we explicitly write out all

substitutions in the examples. In practice, a compiler could simply capture dependencies from the

, Vol. 1, No. 1, Article . Publication date: January 2025.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Tsung-Ju Chiang

context, so entries like x = x can be omitted. More generally, we can write any expression e in

(s3 with x = e) .

Notably, types like (x : int
1 ⊢ int

1
) are first-class. Therefore, we can have dependencies in

normal let definitions:

let w : (x : string
1
; y : int

1 ⊢ int
0
) = e

This binds w to expression e , which depends on x and y and produces a value of type int
0 .

Moreover, function arguments can also be declared with dependencies:

val f : (x : string
1
; y : int

1 ⊢ int
0
) → int

0

let f z = (z with x = "hello"; y = 42)

Here, f takes an argument with dependencies x and y , and uses it with x bound to "hello" and

y bound to 42 . We can then write, for example, f w .

Furthermore, dependencies can be nested, allowing splices to depend on other splices and

effectively enabling nested splices:

let z : (s : (x : int
1 ⊢ string

1
) ⊢ string

1
code) = <s with x = 42>

2.2 Reuse of Splice Variables
Consider the following meta-program, where f : int

1
code → int

1
code :

<fun x → $(f <x>) + $(f <x>)>

This program generates a function that applies f to its argument x twice and adds the results. For

example, given f y = <$(y) + 1> , the program generates:

<fun x → (x + 1) + (x + 1)>

However, in this case, the two splices in the original computation are evaluated sequentially, leading

to duplicated computations of $(f <x>) .

To eliminate duplicated computations, we can pre-compute the result of the splice expression:

let s = <fun z → $(f <z>)> in
<fun x → $(s) x + $(s) x>

Unfortunately, while this avoids redundant computations, it introduces two unnecessary beta-

redexes in the generated code:

<fun x → ((fun z → z + 1) x) + ((fun z → z + 1) x)>

In our calculus, we can easily reuse splice variables without introducing unnecessary abstractions.

Specifically, we can express the original computation as:

let$ s : (z : int
1 ⊢ int

1
) = f <z> in

<fun x → (s with z = x) + (s with z = x)>

Here, let$ declares a splice variable s with a dependency on z: int
1 . The expression f <z> is

evaluated symbolically, which can refer to variable z . The (s with z = x) syntax then directly

substitutes z with x . In this case, the splice expression is only evaluated once, and the generated

code is the desired <fun x → (x + 1) + (x + 1)> . In other words, the program achieves both

computational efficiency and clean generated code. Moreover, we can also reuse the same splice

variable and provide different substitutions, e.g. (s with z = x) + (s with z = (x + 2)) .

, Vol. 1, No. 1, Article . Publication date: January 2025.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Typed Meta-Programming with Splice Variables 5

2.3 Unhygienic Macros
Hygienic macros, whose expansion is guaranteed to not accidentally capture variables, are well

established, but can sometimes be insufficient. Barzilay et al. [2011] observed that there are common

kinds of unhygienic macros that are practically useful. One common kind of them that implicitly

introduce bindings are “notoriously difficult to deal with”. Two such well-known example are a

looping macro (e.g. while) that implicitly binds a variable (e.g. abort) that can be used to escape

the loop inside the loop body [Clinger 1991], and anaphoric conditionals which introduces a binding

to hold the value of the tested expression.

In this work, we use unhygienic macros to mean functions whose arguments may depend on

additional later-stage variables that are to be supplied when the function is used, and unhygienic
values as its first-class counterpart, i.e. values that may depend on additional later-stage variables.

To demonstrate how unhygienic macros work in our calculus, we consider anaphoric conditionals

as an example. Concretely, we would like to create a “macro” aif , with which we can write the

following program:

aif <big-long-calculation> <foo it> <bar it>

Here, both then- and else-branches can refer to the variable it to stand for the result of the

big-long-calculation . Specifically, the program will expand to:

<let it = big-long-calculation in
if it then (foo it) else (bar it)>

In a statically typed language, it is obvious that it will stand for True in the then-branch and

False in the else-branch, so the macro is less useful. In languages like Scheme, however, the value

of it is not necessarily False in the else-branch.

In our calculus, we can define aif with the following function type signature, where the second

and third arguments are declared with an additional dependency on variable it :

val aif : bool
1
code

→ (it : bool
1 ⊢ 'a

1
code)

→ (it : bool
1 ⊢ 'a

1
code)

→ 'a
1
code

When applied, the type signature of aif informs the type checker to introduce a new variable it

into the scope of the second and third arguments (e.g. foo and bar), allowing them to directly

refer to it. Given this signature, we can implement aif as follows:

let aif cond foo bar =

let$ s1 : bool
1
= cond in

let$ s2 : (it : bool
1 ⊢ 'a

1
) = foo with it = it in

let$ s3 : (it : bool
1 ⊢ 'a

1
) = bar with it = it in

<let it = s1 in
if it then (s2 with it = it)
else (s3 with it = it)>

The function takes three code arguments, cond , foo , and bar , with the latter two depending

on an additional variable it . First, the arguments are unwrapped using let$, binding them to

splice variables s1 , s2 , and s3 for use inside the quotation. The dependencies of foo and bar

are explicitly rebound as dependencies of their corresponding splice variables. Then, the output

code expression is constructed using a quotation. The splice variables indicate where each piece of

, Vol. 1, No. 1, Article . Publication date: January 2025.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Tsung-Ju Chiang

code should be inserted, while the with syntax specifies the desired binding structure. Notably,

while the code expressions for both branches will get generated, only the selected branch will be

evaluated depending on the value of it .

By supporting unhygienic macros, our calculus can express a wider range of meta-programming

patterns, including those that intentionally "break" lexical scoping in a well-typed way.

2.4 Pattern Matching on Code
So far we have focused on generative meta-programming, where smaller code fragments are

combined to create larger ones, as seen in the power and aif examples. In contrast, analytic
macros [Ganz et al. 2001; Stucki et al. 2021] can inspect the content of or take apart code fragments,

and enable useful techniques like code rewriting for optimization.

In staging calculi, this is often realized through pattern matching on code [Jang et al. 2022;

Parreaux et al. 2017]. However, typing code patterns is much more complicated, especially since

matching under a binder can yield a code expression that contains the bound variable inaccessible

outside of its scope.

We extend our calculus with support for pattern matching on code, which allows us to inspect

the structure of code fragments. Interestingly, we show that pattern matching can be naturally

supported with variable dependencies.

As an example, consider a program that computes the partial derivative of an arithmetic expres-

sion as a code fragment. Specifically, the following function partial recursively matches the input

argument e , generating code for its partial derivative with respect to an variable var :

val (+) (*) : int
1 → int

1 → int
1

val partial : (var : int
1 ⊢ int

1
code → int

1
code)

let rec partial e =

match$ e with
| (`var) → <1>
| (g `+ h) →

let$ dg = (partial with var = var) <g> in
let$ dh = (partial with var = var) <h> in
<dg + dh>

| (g `* h) →
let$ dg = (partial with var = var) <g> in
let$ dh = (partial with var = var) <h> in
<g * dh + h * dg>

| _ → <0>

The function uses match$ to perform pattern matching on code. Code patterns distinguish two

kinds of variables: pattern variables like g and h match any code expression, and variables like

`var , `+ and `* match those specific identifiers. This illustrates how our calculus supports analytic

macros naturally by combining pattern matching and unhygienic variable bindings.

We can apply partial by providing var and an argument. For example, the following program:

let$ df : (x y : int
1 ⊢ int

1
) = (partial with var = x) <x * y + 1>

generates <(1 * y + x * 0) + 0> for any given x and y . We can use df by providing specific x

and y , e.g. df with x = 1, y = 2 .

Dependency tracking becomes crucial when matching under a binder. For example, consider

computing the partial derivative of a let expression let (y : int) = f in g . Using the chain

, Vol. 1, No. 1, Article . Publication date: January 2025.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Typed Meta-Programming with Splice Variables 7

rule, the derivative can be expressed as:

𝜕𝑥𝑔(𝑥, 𝑓 (𝑥)) = 𝜕𝑥𝑔(𝑥,𝑦) |𝑦=𝑓 (𝑥) +𝜕𝑦𝑔(𝑥,𝑦) |𝑦=𝑓 (𝑥) ·𝜕𝑥 𝑓 (𝑥)

This can be implemented as follows:

match$ e with
| ...

| (let (y : int
1
) = f in g) →

let$ dg1 : (y : int
1 ⊢ int

1
)

= (partial with var = var) <g with y = y> in
let$ dg2 : (y : int

1 ⊢ int
1
)

= (partial with var = y) <g with y = y> in
let$ df = (partial with var = var) <f> in
<let (y : int1) = f in
(dg1 with y = y) + (dg2 with y = y) * df>

Here, g is matched as a splice variable with an additional dependency on y . dg1 computes the

derivative of g with respect to the given variable var , dg2 computes the derivative of g with

respect to y , and df computes the derivative of f . The final expression combines these derivatives

according to the chain rule.

2.5 Code Rewriting
Another useful analytic feature is code rewriting [Parreaux et al. 2017], which replaces all occurrences
of a pattern in a target expression with a replacement expression. In our extended calculus, code

rewriting can be expressed as:

rewrite p as e_replacement in e_target

where p is a code pattern and e_replacement and e_target are code expressions. This feature is

especially useful for optimizing code that are programmatically generated, which often contain

redundant code that can be simplified. For example, consider the code generated by the partial

example above:

<(1 * y + x * 0) + 0>

The 1 * , * 0 , and + 0 are redundant. We can use code rewriting to simplify the expression:

let$ df_opt : (x y : int
1 ⊢ int

1
) =

rewrite (`1 `+ z) as <z> in
rewrite (z `+ `0) as <z> in
rewrite (z `+ `0) as <z> in
rewrite (z `* `0) as <0> in
<df with x = x; y = y>

which simplifies the expression to <y> .

3 Core Syntax and Typing
We introduce 𝜆○▷, a typed lambda calculus with quotations, let-quote bindings, and unhygienic

functions. The full syntax of 𝜆○▷ is summarized in fig. 1.

, Vol. 1, No. 1, Article . Publication date: January 2025.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Tsung-Ju Chiang

3.1 Types and Typing Contexts
A key design of 𝜆○▷ is the use of nested typing contexts to track variable dependencies and stage

levels. They enable unhygienic macros and serves as the foundation for supporting code pattern

matching, which will be introduced in section 6.

3.1.1 Contexts . Contexts are defined by the grammar:

Γ,Δ F · | Γ, x : [Δ ⊢n A]
Each variable x in a context is associated with:

• A context Δ, which tracks the additional variable dependencies of x. When Δ is empty, we

write x : An
as shorthand for x : [· ⊢n A].

• A stage level n which specifies the stage of computation at which x can be accessed. The

stage levels carry the same meaning as in Davies’s 𝜆○: higher values correspond to later

stages, such as runtime, while lower values correspond to earlier stages, such as compile

time.

• A type A, which describes the kind of value x represents.

3.1.2 Types . Types are defined by the grammar:

A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A

• bool represents booleans.
• [Δ ⊢ A] → B represents unhygienic functions from A to B, where the argument may

additionally depend on variables in Δ. When Δ is empty, these are just normal functions,

and we write A→ B as shorthand for [· ⊢ A] → B.
• ○A represents quoted expressions of type A, whose computations happen at the next stage,

as in 𝜆○ .

• Δ ▷A represents unhygienic values of type A with dependencies Δ. This type is dual to
the unhygienic function type, in the sense that (Δ ▷A) → B is equivalent to [Δ ⊢ A] → B.
We keep [Δ ⊢ A] → B in the syntax as it allows us to express unhygienic macros more

naturally.

3.1.3 Well-stagedness. We consider only well-staged contexts and types in our typing rules. A

context Γ is well-staged at level n, if every entry x : [Δ ⊢m A] in Γ meets two conditions:

• m ≥ n, and
• Δ and A are well-staged at level m.

In other words, stage levels can only stay the same or increase as the nesting of [] becomes deeper.

For types, well-stagedness is defined as follows:

• bool is well-staged at any level.

• [Δ ⊢ A] → B is well-staged at level n, if
– A and B are well-staged at level n, and
– Δ is well-staged at level n + 1.

• ○A is well-staged at level n if A is well-staged at level n + 1.
• Δ▷A is well-staged at level n if A is well-staged at level n and Δ is well-staged at level n+ 1.

Staging of ○A reflects that quotations contain expressions belonging to the next stage. Staging of

[Δ ⊢ A] → B and Δ▷A captures the concept of unhygienic values: values that depend on later-stage

variables and compute with them symbolically.

Note that in 𝜆○ staging of types is implicit and relative to the context, while in 𝜆○▷ staging is

explicit and absolute. This is more of a matter of presentation than a fundamental difference: we

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Context.html#Context
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Context.html#Type

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Typed Meta-Programming with Splice Variables 9

could have staged the Δ’s in our types relatively to achieve relative staging, but we chose to make

staging explicit to simplify the presentation of our rules. We discuss the trade-off between the two

approaches in section 8.1.

3.1.4 Stage Annotation. When the staging level isn’t clear from the context, we use superscripts

Γn and An
to indicate their levels. This notation binds more tightly than type constructors and the

comma “,” in contexts. Using this notation, we can annotate the grammar as follows:

Γn,Δn F · | Γn, x : [Δm ⊢m Am] (𝑚 ≥ 𝑛)
An, Bn F bool | [Δn+1 ⊢ An] → Bn | ○An+1 | Δn+1 ▷An

3.1.5 Restriction . The restriction of a context Γ to level n, written Γ↾n, removes all variables in

Γ with levels less than n. Restriction preserves well-stagedness: if Γ is well-staged at some level n,
then Γ↾m is well-staged at level m for any m.

3.2 Expressions
Next, we define the syntax of expressions in 𝜆○▷. The grammar is as follows:

e F x𝜎 (Variables)

| true | false | if e1 then e2 else e3 (Booleans)

| 𝜆Δx : A. e | e1 e2 (Functions)

| ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2 (Quote and Unquote)

| wrapΔe | letwrapΔ x : A = e1 in e2 (Wrap and Unwrap)

𝜎 F · (Empty)

| 𝜎, x ↦→ y (Renaming)

| 𝜎, x ↦→ e (Substitution)

x𝜎 represents a variable x paired with a delayed substitution 𝜎 . The delayed substitution maps

dependencies of x to variables or expressions in the current context, and is appliedwhen x is replaced
with a concrete expression; the formal definition of substitution is given in Section 4.1. 𝜆Δx : A. e
defines an unhygienic function whose argument x depends on variables in Δ; e1 e2 applies a function
e1 to an argument e2. ⟨e⟩ quotes an expression e into a code expression; letΔ⟨x : A⟩ = e1 in e2
unquotes a code expression e1 that can depend on variables in Δ, introducing a next-stage variable x
with dependencies Δ, which can be used inside quotations in e2. wrapΔe wraps an expression e with
dependencies Δ, allowing it to symbolically compute with the variables; letwrapΔ x : A = e1 in e2
unwraps a wrapped expression e1, introducing a current-stage variable x with dependencies Δ,
directly usable in e2. In all cases, the subscripted Δ is staged one level higher than the current

context, and can be arbitrarily nested.

Substitutions can contain two kinds of entries: x ↦→ y renames a dependency x to another

variable y, and x ↦→ e maps a dependency x to an expression e.
Table 1 summarizes the mapping between concrete and abstract syntax.

3.3 Typing Rules
The typing judgment Γ ⊢n e : A assigns a type A to an expression e under the context Γ, at stage
level n. The following assumptions apply:

(1) All contexts contain distinct variables.

(2) Both the context Γ and the type A are well-staged at level n.
The rules are defined as follows:

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Context.html#_%E2%86%BE

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Tsung-Ju Chiang

Concrete Syntax Abstract Syntax

x with y = e1; z = e2 xy ↦→e1,z ↦→e2
fun x : (∆ ⊢ A) → e 𝜆Δx : A. e
let x : (∆ ⊢ A) = e1 in e2 (𝜆Δx : A. e2) e1
let$ x : (∆ ⊢ A) = e1 in e2 letΔ⟨x : A⟩ = e1 in e2
f x f x
<e> ⟨e⟩
true false true false
if e1 then e2 else e3 if e1 then e2 else e3
Table 1. Mapping between concrete and abstract syntax

Γ ⊢n e : A (Expression Typing)

VarSubst

Γ ∋ x : [Δ ⊢n A] Γ ⊢ 𝜎 : Δ

Γ ⊢n x𝜎 : A

True

Γ ⊢n true : bool

False

Γ ⊢n false : bool

If

Γ ⊢n e1 : bool Γ ⊢n e2 : A Γ ⊢n e3 : A
Γ ⊢n if e1 then e2 else e3 : A

CtxAbs

Γ, x : [Δn+1 ⊢n A] ⊢n e : B
Γ ⊢n 𝜆Δx : A. e : [Δ ⊢ A] → B

CtxApp

Γ ⊢n e1 : [Δn+1 ⊢ A] → B Γ,Δ ⊢n e2 : A
Γ ⊢n e1 e2 : B

Quote

Γ↾n+1 ⊢n+1 e : A
Γ ⊢n ⟨e⟩ : ○A

LetQuote

Γ,Δn+1 ⊢n e1 : ○A Γ, x : [Δ ⊢n+1 A] ⊢n e2 : B
Γ ⊢n letΔ⟨x : A⟩ = e1 in e2 : B

Wrap

Γ,Δn+1 ⊢n e : A
Γ ⊢n wrapΔe : Δ ▷A

LetWrap

Γ ⊢n e1 : Δ ▷A Γ, x : [Δ ⊢n A] ⊢n e2 : B
Γ ⊢n letwrapΔ x : A = e1 in e2 : B

Judgment Γ ⊢ 𝜎 : Γ′ types a substitution 𝜎 that maps variables in Γ′ to variables or expressions in Γ.

Γ ⊢ 𝜎 : Γ′ (Substitution Typing)

S-Empty

Γ ⊢ · : ·

S-Rename

Γ ⊢ 𝜎 : Γ′ Γ ∋ y : [Δ ⊢m A]
Γ ⊢ (𝜎, x ↦→ y) : Γ′, x : [Δ ⊢m A]

S-Subst

Γ ⊢ 𝜎 : Γ′ Γ↾m,Δ ⊢m e : A

Γ ⊢ (𝜎, x ↦→ e) : Γ′, x : [Δ ⊢m A]

Rule VarSubst defines how variables may be used in expressions. A variable x : [Δ ⊢n A] can
only be used at level n, and must be accompanied by a substitution 𝜎 that maps each dependency

in Δ to an expression with the corresponding type under Γ. If Δ is empty, as is the case for normal

variables, then 𝜎 is also empty.

The rules True, False, and If are standard.

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Term.html#Term
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Term.html#_%E2%8A%A9_

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Typed Meta-Programming with Splice Variables 11

For the unhygienic function type [Δ ⊢ A] → B, rule CtxAbs creates an unhygienic function,

allowing its argument to refer to variables in a context Δ. Rule CtxApp applies an unhygienic

function, extending the context with variables from Δ to type-check the argument.

RuleQuote quotes an expression into a code expression. The rule increases the level to n + 1
and updates the context to Γ↾n+1 to type-check the quoted expression e. If e has type A, ⟨e⟩ has the
code type ○A. Rule LetQuote unquotes a code expression and binds it to a variable x at the next

level. This variable represents an open code fragment that may additionally depend on variables in

a context Δ.
RuleWrapwraps an expression with dependencies Δ, producing an unhygienic value type Δ▷A,

Note that unlike the ○ type, Δ ▷ does not change the stage level of the expression. Rule LetWrap

unwraps a wrapped expression and binds it to a contextual variable x : [Δ ⊢n A].
Typing rules for substitutions ensure that the substitution 𝜎 provides mappings for corresponding

variables in Γ′. We call Γ′ the domain of 𝜎 and Γ the codomain. Rule S-Rename checks that renaming

preserves the stage level and dependencies of a variable. Rule S-Subst checks that substitution

maps an m-level variable x to an m-level expression e, where Γ is restricted to level m and is then

appended with Δ to type-check e.

4 Dynamics
We describe a small-step, call-by-value operational semantics for 𝜆○▷, based on term substitution.

4.1 Substitution
Substitution is mutually defined on typed expressions and substitutions. Given a substitution

Γ2 ⊢ 𝜎 : Γ1, e[𝜎] applies 𝜎 to a typed expression Γ1 ⊢n e : A, while 𝜎1 [𝜎] applies 𝜎 to all entries of

a type substitution Γ1 ⊢ 𝜎1 : Δ, computing their composition. For e[𝜎], The only non-trivial case

is the variable case, which will be discussed in detail. All the other cases only involve weakening

or restricting the substitution and recursing into the sub-expressions. For 𝜎1 [𝜎], the function

recursively processes all entries of 𝜎1.

We introduce the following notations for substitutions: 𝜎↾n restricts the domain of 𝜎 by removing

entries with levels smaller than n, similar to context restriction. idΓ denotes the identity substitution
on Γ, i.e. x1 ↦→ x1, x2 ↦→ x2 . . . for x𝑖 ∈ Γ. They have the following types:

• If Γ2 ⊢ 𝜎 : Γ1 then Γ2↾n ⊢ 𝜎↾n : Γ1↾n.
• Γ ⊢ idΓ : Γ.

Given a typed substitution, we write xmΔ ↦→ e if the substitution entry is typed x : [Δ ⊢m A] in the

domain of the substitution and maps to 𝑒 .

e[𝜎] (Expression Substitution)

(x𝜎1) [𝜎] ≔
{
y(𝜎1 [𝜎]) if 𝜎 (x) = y,
e[idΓ2↾m , 𝜎1 [𝜎]] if 𝜎 (x) = e.

(true) [𝜎] ≔ true
(false) [𝜎] ≔ false

(if e1 then e2 else e3) [𝜎] ≔ if e1 [𝜎] then e2 [𝜎] else e3 [𝜎]
(𝜆x : A. e) [𝜎] ≔ 𝜆x : A. e[𝜎, x ↦→ x]
(e1 e2) [𝜎] ≔ e1 [𝜎] e2 [𝜎]
(⟨e⟩) [𝜎] ≔ ⟨e[𝜎↾]⟩

(letΔ⟨x : A⟩ = e1 in e2) [𝜎] ≔ letΔ⟨x : A⟩ = (e1 [𝜎, idΔ]) in (e2 [𝜎, x ↦→ x])

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Substitution.html#subst

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Tsung-Ju Chiang

(wrapΔe) [𝜎] ≔ wrapΔ (e[𝜎, idΔ])
(letwrapΔ x : A = e1 in e2) [𝜎] ≔ letwrapΔ x : A = (e1 [𝜎]) in (e2 [𝜎, x ↦→ x])

𝜎1 [𝜎] (Substitution Substitution)

(·) [𝜎] ≔ ·
(𝜎1, x ↦→ y) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ 𝜎 (y)
(𝜎1, xmΔ ↦→ e) [𝜎] ≔ 𝜎1 [𝜎], x ↦→ e[𝜎↾m, idΔ]

4.1.1 Termination. The substitution functions defined above is not structurally recursive on e by
its definition, so it’s not immediately obvious whether the function is total. The problematic case is

the second case of (x𝜎1) [𝜎]:
(x𝜎1) [𝜎] = e[idΓ2↾m , 𝜎1 [𝜎]] if 𝜎 (x) = e.

Here, the term e is not a subterm of x𝜎1 but rather an element of the substitution 𝜎 . Therefore,

we cannot argue for termination based solely on the size of the input expression. To prove that

substitution terminates and is thus well-defined, we define a depth measure on typed substitutions

and use it in additon to the size of the expression to show termination. From the definition of

substitution, we observe that the mesure must decrease in the problematic case and be preserved

under restriction and weakening. These observations motivate the following definitions:

depth(Γ) (Context Depth)

depth(·) ≔ 0

depth(Γ, x : [Δ ⊢m A]) ≔ depth(Γ) ⊔ (depth(Δ) + 1)

depth(𝜎) (Substitution Depth)

depth(·) ≔ 0

depth(𝜎, x ↦→ y) ≔ depth(𝜎)
depth(𝜎, xmΔ ↦→ e) ≔ depth(𝜎) ⊔ (depth(Δ) + 1)

Preservation of depth is trivial, because renamings are simply not counted. For decrement, we

have the following lemma:

Lemma 4.1 (Substitution depth decreases). Let Γ1 ⊢ 𝜎1 : Δ and Γ2 ⊢ 𝜎 : Γ1. If xmΔ ↦→ e ∈ 𝜎
then

depth(𝜎1 [𝜎]) ≤ depth(Δ) < depth(𝜎).
These together show that substitution is well-defined. In additon, substitution preserves typing,

as stated in the following lemma:

Lemma 4.2 (Substitution). Given Γ2 ⊢ 𝜎 : Γ1,
• if Γ1 ⊢n e : A then Γ2 ⊢n e[𝜎] : A,
• if Γ1 ⊢ 𝜎1 : Δ then Γ2 ⊢ 𝜎1 [𝜎] : Δ.

4.2 Reduction
We first define values and evaluation contexts:

Values v F true | false | 𝜆Δx : A. e | ⟨e⟩ | wrapΔv
Evaluation Contexts E F [] | E e2 | v1 E | if E then e2 else e3 | letΔ⟨x : A⟩ = E in e2

| wrapΔE | letwrapΔ x : A = E in e2

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Substitution.html#substSubst
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Depth.html#depth
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Depth.html#depthSubst
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Substitution.html#subst%E1%B5%88
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Substitution.html#subst

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Typed Meta-Programming with Splice Variables 13

Evaluation contexts E are essentially an expression with a hole [], and we write 𝐸 [e] for the
expression obtained by pulling e into the hole of E.

The call-by-value reduction is defined as follows. We write −→𝛽 for a step of beta reduction, and

−→ for evaluation under an evaluation context.

Γ ⊢n e −→ e′ (Call-by-value Reduction)

CtxAppAbs

Γ ⊢n (𝜆Δx : A. e1) v2 −→𝛽 e1 [idΓ, x ↦→ v2]

LetQuoteQuote

Γ ⊢n letΔ⟨x : A⟩ = ⟨e1⟩ in e2 −→𝛽 e2 [idΓ, x ↦→ e1]

LetWrapWrap

Γ ⊢n letwrapΔ x : A = wrapΔv1 in e2 −→𝛽 e2 [idΓ, x ↦→ v1]

IfTrue

Γ ⊢n if true then e2 else e3 −→𝛽 e2

IfFalse

Γ ⊢n if false then e2 else e3 −→𝛽 e3

Cong

Γ ⊢n e1 −→𝛽 e2
Γ′ ⊢n 𝐸 [e1] −→ 𝐸 [e2]

Preservation is a corollary of the substitution lemma (4.2).

Lemma 4.3 (Preservation). If Γ ⊢n e : A and Γ ⊢n e −→ e′ then Γ ⊢n e′ : A.

Progress holds for expressions that don’t contain variables at the current level. This reflects our

definition of “unhygienic values”: values in this calculus are not necessarily closed terms but may

include variables from later stages.

Lemma 4.4 (Progress). If Γn+1 ⊢n e : A then either e is a value or there exists e′ such that
Γn+1 ⊢n e −→ e′.

Notably, since we allow arbitrary nesting of dependencies, having delayed substitutions in our

calculus is crucial for progress to hold. For example, consider the following code:

letx:[z:bool⊢1bool] ⟨y : bool⟩ =
let ⟨z : bool⟩ = ⟨true⟩ in ⟨xz ↦→z⟩

in ⟨true⟩

Here, y is declared with a dependency x, and x is in turn declared with dependency z. To evaluate

the inner let binding, we need a way to substitute z with true in the with clause. Without allowing

delayed substitutions to contain arbitrary expressions (e.g. xz ↦→true), the substitution would not be

possible, and the evaluation would get stuck. In contrast, the core calculus of Xie et al. [2022] does

not allow nested dependencies. As a result, in such a system, variables can simply capture their

dependencies from the context without breaking progress.

4.3 Example
We demonstrate the reduction steps of the calculus with a larger example. Since the code fragments

are longer, we present them in the concrete syntax for better readability. The mapping between the

concrete syntax and the abstract syntax is provided in table 1.

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Reduction.html#_-%E2%86%92_
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Reduction.html#_-%E2%86%92_
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Reduction.html#progress

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Tsung-Ju Chiang

1let$ y : (x : (z : bool
1 ⊢ bool

1
) ⊢ bool

1
) =

2let$ z = <true> in <x with z = z>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = x) and z>

Which definition of z is supplied to x?

First, line 2 is reduced to <x with z = true> , as we discussed in the previous subsection.

1let$ y : (x : (z : bool
1 ⊢ bool

1
) ⊢ bool

1
) =

2<x with z = true>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = x) and z>

Then, definition of y is substituted with the content of <x with z = true> , which triggers the

delayed substitution with x = x , which has no visible effect.

1let$ x : (z : bool
1 ⊢ bool

1
) = <not z> in

2let$ z = <false> in
3<(x with z = true) and z>

Then, x is substituted with the context of <not z> , which triggers the delayed substitution

with z = true and results in <not true> .

1let$ z = <false> in
2<(not true) and z>

Finally, z is substituted with the content of <false> .

<(not true) and false>

This is the final result, as quoted expressions are values and cannot be reduced further.

4.3.1 Changing Dependencies. Say we want x to capture the z = false instead, we either have

to change the definition of y to explicitly capture z ,

1let$ y : (x : (z : bool
1 ⊢ bool

1
); z : bool

1 ⊢ bool
1
) =

2<x with z = z>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = x; z = z) and z>

or change the definition of y to capture a non-capturing version of x ,

1let$ y : (x : bool
1 ⊢ bool

1
) =

2<x>
3in
4let$ x : (z : bool

1 ⊢ bool
1
) = <not z> in

5let$ z = <false> in
6<(y with x = (x with z = z)) and z>

, Vol. 1, No. 1, Article . Publication date: January 2025.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Typed Meta-Programming with Splice Variables 15

These examples demonstrate the capability of our type system to express and enforce different

kinds of variable dependencies in unhygienic programs.

5 Translating between 𝜆○▷, 𝜆○, and CLTL
We show that 𝜆○▷ is sound and complete with respect to 𝜆○ using its Hilbert-style counterpart,

Constructive Linear-time Temporal Logic (CLTL).
Davies introduced 𝜆○ [Davies 1996], the first multi-stage language inspired by temporal logic.

Kojima and Igarashi developed a Hilbert-style axiomatization of 𝜆○ called Constructive Linear-time
Temporal Logic (CLTL) [Kojima and Igarashi 2011], which is characterized by the following axioms

and rules:

Axioms
• any intuitionistic tautology instance

• K : ○(A→ B) → ○A→ ○B
• CK : (○A→ ○B) → ○(A→ B)

Rules
• If A→ B and A, then B.
• If A, then ○A.

To show soundness, we translate 𝜆○▷ types into CLTL formulas and 𝜆○▷ expressions into 𝜆○

expressions. For completeness, we show that CLTL formulas are provable in 𝜆○▷. A direct translation

from 𝜆○ to 𝜆○▷, similar to the translation from 𝜆○ to 𝐹 ⟦⟧ in [Xie et al. 2022], is also possible but is

not covered here.

5.1 𝜆○▷ to CLTL
We convert types and judgments in 𝜆○▷ to CLTL formulas. Intuitively, the translation involves

adding correct number of circles to match the level of staging. For example, type [Δ ⊢ A] → B
corresponds to (○Δ→ A) → B and Δ▷A corresponds to ○Δ→ A. Since CLTL has the equivalence
(○A → ○B) ↔ ○(A → B), the way circles are introduced is not important if provability is the

main concern. The formal translation for types is defined as follows:

⟦A⟧ (Type Translation)

⟦bool⟧ ≔ bool

⟦○A⟧ ≔ ○⟦A⟧
⟦[Δn+1 ⊢ A] → B⟧ ≔ (Δ %n ⟦A⟧) → ⟦B⟧

⟦Δn+1 ▷A⟧ ≔ Δ %n ⟦A⟧
The notation Γ %n A recursively flattens Γ into a nested chain of implications pointing to A, adding
○ constructors to lower each item from its original level to level 𝑛, such that if

Γ = x1 : [Δ1 ⊢m1 A1], . . . , xk : [Δk ⊢mk Ak],
then

Γ %n A = ○m1−n (Δ1 %m1 ⟦A1⟧) → · · · → ○mk−n (Δk %mk ⟦Ak⟧) → A.

Formally, it is defined as follows:

Γ %n A (Context to Implications)

· %n A ≔ A

(Γ, x : [Δ ⊢m A]) %n B ≔ Γ %n
(
○m−n

(
Δ %m ⟦A⟧

)
→ B

)
, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Splice.Translate.html#%E2%9F%A6_%E2%9F%A7%E1%B5%97
https://tsung-ju.org/masters-thesis/agda/Splice.Translate.html#_%5E_%E2%87%9B_

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Tsung-Ju Chiang

Then, a 𝜆○▷ typing judgment Γ ⊢n e : A corresponds to the CLTL formula Γ %n ⟦A⟧. We prove

that the translation is sound by induction on the typing derivations.

Lemma 5.1 (Translation Soundness). If Γ ⊢n e : A for some 𝑒 in 𝜆○▷, then ⊢ Γ %n ⟦A⟧ in CLTL.

Translation from 𝜆○▷ to 𝜆○ . We now define a translation from 𝜆○▷ to 𝜆○ , where letΔ⟨y : A⟩ =
e1 in e2 is translated into let y = ⟨𝜆Δ. $(e1)⟩ in e2 [$(y)/y]. The translation preserves types but

introduces addition beta redexes in quotations, similar to the example shown in Section 2.2. The

translation from 𝜆○▷ contexts to 𝜆○ contexts is given below, where each context entry is flattened

using the CLTL translation.

⟦Γ⟧ (Context to Context)

⟦·⟧ ≔ ·
⟦Γ, x : [Δ ⊢m A]⟧ ≔ ⟦Γ⟧, x : (Δ %m ⟦A⟧)m

We then define the term translation as follows, where ⟨e⟩n quotes e by 𝑛 times, $
n (e) splices e

by 𝑛 times, 𝝀Δ. e abstracts an unhygienic term e with respect to Δ using lambda abstractions, and

x • 𝜎 applies an variables x to each translated element in 𝜎 .

⟦e⟧ (Expression Translation)

⟦x𝜎⟧ ≔ x • 𝜎
⟦true⟧ ≔ true

⟦false⟧ ≔ false

⟦if e1 then e2 else e3⟧ ≔ if ⟦e1⟧ then ⟦e2⟧ else ⟦e3⟧
⟦𝜆Δx : A. e⟧ ≔ 𝜆x . ⟦e⟧

⟦e1 e2⟧ ≔ ⟦e1⟧ (𝝀Δ. ⟦e2⟧)
⟦⟨e⟩⟧ ≔ ⟨⟦e⟧⟩

⟦letΔ⟨x : A⟩ = e1 in e2⟧ ≔ let x = ⟨𝝀Δ. ⟦e1⟧⟩ in (⟦e2⟧[$(x)/x])
⟦wrapΔe⟧ ≔ 𝝀Δ. ⟦e⟧

⟦letwrapΔ x : A = e1 in e2⟧ ≔ let x = ⟦e1⟧ in ⟦e2⟧

𝝀Δ. e (Dependency Abstraction)

𝝀(·). e ≔ e

𝝀(Δ, x : [Δ′ ⊢m A]) . e ≔ 𝝀Δ. (𝜆x . e[$m−n x/x])

x • 𝜎 (Dependency Application)

x • (·) ≔ x

x • (𝜎, ymΔ ↦→ e) ≔ (x • 𝜎) ⟨𝝀Δ. ⟦e⟧⟩m−n

x • (𝜎, ymΔ ↦→ z) ≔ (x • 𝜎) ⟨z⟩m−n

The translation preserves typing, as stated in the following lemma:

Lemma 5.2 (⟦·⟧ preserves typing). If Γ ⊢n e : A in 𝜆○▷ then ⟦Γ⟧ ⊢n ⟦e⟧ : ⟦A⟧ in 𝜆○ .

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Splice.Translate.html#%E2%9F%A6_%E2%9F%A7%E1%B6%9C
https://tsung-ju.org/masters-thesis/agda/Splice.Translate.html#%E2%9F%A6_%E2%9F%A7%E1%B5%89
https://tsung-ju.org/masters-thesis/agda/Splice.Translate.html#%60%CE%BB%CE%BB
https://tsung-ju.org/masters-thesis/agda/Splice.Translate.html#applyTerm
https://tsung-ju.org/masters-thesis/agda/Splice.Translate.html#%E2%9F%A6_%E2%9F%A7%E1%B5%89

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Typed Meta-Programming with Splice Variables 17

5.2 CLTL to 𝜆○▷

Next, we show completeness of 𝜆○▷ with respect to CLTL through a backwards translation. Axioms

of CLTL [Kojima and Igarashi 2011] can be proved by the following terms.

K : ○(A→ B) → ○A→ ○B
K ≔ 𝜆f . 𝜆x . let ⟨f ′ : A→ B⟩ = f in let ⟨x′ : A⟩ = x in ⟨f ′ x′⟩

CK : (○A→ ○B) → ○(A→ B)
CK ≔ 𝜆f . letx:An+1 ⟨y : B⟩ = f ⟨x⟩ in ⟨𝜆x . yx ↦→x⟩

whereA and B are types staged at level𝑛+1. The ability to introduce dependencies in rule LetQuote

is crucial in the the proof of CK. This shows that the ○ fragment of our language is complete with

respect to CLTL and thus 𝜆○ .

Translation from 𝜆○ to 𝜆○▷. A direct translation from 𝜆○ to 𝜆○▷ can be done through a lifting

transformation, similar to the translation from 𝜆○ to 𝐹 ⟦⟧ described in [Xie et al. 2022]. The ability

to introduce dependencies similarly plays a crucial role in splice lifting.

6 Analytic Macros
We describe 𝜆○▷

pat
, an extension of 𝜆○▷ with code pattern matching and code rewriting, enabling

analytic macros. The full syntax, typing rules, and operational semantics are summarized in

section B.

6.1 Syntax
We extend the syntax of 𝜆○▷ with two new expression forms: if-let expressions for code pattern

matching and rewrite expressions for code rewriting.

The if letΔ⟨p⟩ = e1 then e2 else e3 expression matches the content of the code expression e1
against pattern p. It can be seen as a generalization of the letΔ⟨x : A⟩ = e1 in e2 expression in 𝜆○▷,

where 𝑥 : 𝐴 becomes a general pattern p. If the match succeeds, e2 is evaluated with the pattern

variables in p bound to the match results. Otherwise, e3 is evaluated, where the pattern variables

are not available.

The rewrite ⟨p1⟩ as e1 in e2 takes two code expressions e1 and e2, replacing occurrences of p1
with e1 in e2. p may contain pattern variables, which matches sub-expressions in e2 and are made

available in e1.

e F . . . | if letΔ⟨p⟩ = e1 then e2 else e3 | rewrite ⟨p⟩ as e1 in e2

The if-let expression differs from the multi-branch expression (match$) used in our code examples,

as a multi-branch expression can be desugared into nested if-let expressions, and, moreover, if-let

expressions are more convenient for formalization and ensure that the language is total.

Code patterns p are expressions with pattern variables that match sub-expressions. To distinguish

between pattern variables and regular code variables, we use 𝑥 to denote pattern variables and 𝑥 to

denote regular variables. All expression forms are allowed in patterns, including if-let and rewrite

expressions. Substitution patterns 𝜋 are used to match on substitutions, whose entries are either

variables or patterns.

p F x̂ : A | (inherits every production of e)

𝜋 F · | 𝜋, x ↦→ y | 𝜋, x ↦→ p

, Vol. 1, No. 1, Article . Publication date: January 2025.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Tsung-Ju Chiang

We use the notation Π to denote contexts of pattern variables, which is defined as a synonym

for the regular contexts Γ and Δ.

Γ,Δ,Π F · | Γ, x : [Δ ⊢n A]

6.2 Typing Rules
We extend expression typing with rule IfLet that type-checks if-let expressions and rule Rewrite

that type-checks rewrite expressions. Rule IfLet generalizes rule LetQuote by replacing the

single variable x : [Δ ⊢n+1 A] with a pattern variable context Πn+1
, which is made available in the

then-branch e2. Rule Rewrite ensures that both e1 and e2 are code expressions. The replacement

expression e1 must have the same type as the pattern p and may use pattern variables from p. The
target expression e2 may have any type, but only sub-expressions that have the same type as the

pattern p are considered for rewriting.

Γ ⊢n e : A (Expression Typing (extended))
IfLet

Γ↾n+1;Δ
n+1 ⊢n+1 p : A { Πn+1 Γ,Δ ⊢n e1 : ○A Γ,Π ⊢n e2 : B Γ ⊢n e3 : B

Γ ⊢n if letΔ⟨p⟩ = e1 then e2 else e3 : B

Rewrite

Γ↾n+1; · ⊢n+1 p : A { Πn+1 Γ,Π ⊢n e1 : ○A Γ ⊢n e2 : ○B
Γ ⊢n rewrite ⟨p⟩ as e1 in e2 : B

The pattern typing judgement Γ;Δ ⊢n p : A { Π checks the pattern p under Γ and Δ, producing
a type A and a context of pattern variables Π. The typing context is split into Γ and Δ: Γ contains

variables from the surrounding context of the if-let expression, allowing patterns to refer to existing

variables, while Δ contains local variables introduced either by the letΔ or within the pattern p.
Separating local variables from the surrounding context ensures that each pattern variable captures

the correct dependencies. For example, in ⟨(𝜆x . ŷ) ẑ⟩, the pattern variable ŷ should capture x
since it matches on a sub-expression that may contain x, while ẑ should capture no additional

dependencies. In general, pattern variables capture exactly the variables specified in Δ.

Γ;Δ ⊢n p : A { Π (Code Pattern Typing (excerpt))

P-PVar

Γ;Δ ⊢n (x̂ : A) : A { x : [Δ ⊢n A]

P-VarSubst1

Γ ∋ x : [Δ′ ⊢n A] Γ,Δ ⊢ 𝜎 : Δ′

Γ;Δ ⊢n x𝜎 : A { ·

P-VarSubst2

Δ ∋ x : [Δ′ ⊢n A] Γ;Δ ⊢ 𝜋 : Δ′ { Π

Γ;Δ ⊢n x𝜋 : A { Π

P-CtxAbs

Γ;Δ, x : [Δ′n+1 ⊢n A] ⊢n p : B { Π

Γ;Δ ⊢n (𝜆Δ′x : A. p) : [Δ′ ⊢ A] → B { Π

P-CtxApp

Γ;Δ ⊢n p1 : [Δ′ ⊢ A] → B { Π1 Γ;Δ,Δ′ ⊢n p2 : A { Π2

Γ;Δ ⊢n p1 p2 : B { Π1,Π2

Rule P-PVar handles the typing of pattern variables, producing a single pattern variable that

captures the local context Δ. Rules P-VarSubst1 and P-VarSubst2 handle the typing of regular

variables in Γ and Δ respectively. When matching on variables in Δ (rule P-VarSubst2), we are

allowed to further match on the substitution used with it using a substitution pattern 𝜋 . For

variables in Γ, we can only match on a constant substitution 𝜎 (rule P-VarSubst1). This is needed

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#Term.%60iflet%E2%9F%A8_%E2%9F%A9
https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#Pattern

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Typed Meta-Programming with Splice Variables 19

to ensure linearity of pattern variables under substitution, since variables in Γ may be substituted

with arbitrary terms. For example, consider the pattern ⟨xy ↦→ẑ⟩ where 𝑥 ∈ Γ and ẑ is a pattern
variable. When 𝑥 is substituted with a term where 𝑦 is not used linearly, such as 0 or 𝑦 +𝑦, linearity
of ẑ breaks and the pattern no longer type check.

The remaining rules are generalized from the expression typing rules, adapted to handle patterns:

• The typing context Γ is split into Γ and Δ.
• Local variables introduced in the pattern are added to Δ, while Γ remains unchanged.

• Pattern variables produced by each sub-pattern are combined into Π. Since we require

contexts to contain distinct variables, linearity is ensured.

We present rule P-CtxAbs and rule P-CtxApp as examples, with the full set of typing rules available

in section B.2. In rule P-CtxAbs, the local variable x : [Δ′ ⊢n A] is added to Δ to check the pattern

p. In rule P-CtxApp, the pattern variables produced by p1 and p2 are combined into the result.

Γ;Δ ⊢ 𝜋 : Γ′ { Π (Substitution Pattern Typing)

P-S-Empty

Γ;Δ ⊢ · : · { ·

P-S-Var

Γ;Δ ⊢ 𝜋 : Γ′ { Π Γ,Δ ∋ y : [Δ′ ⊢m A]
Γ;Δ ⊢ (𝜋, x ↦→ y) : Γ′, x : [Δ′ ⊢m A] { Π

P-S-Pattern

Γ;Δ ⊢ 𝜋 : Γ′ { Π1 Γ↾m;Δ↾m,Δ
′m ⊢m p : A { Π2

Γ;Δ ⊢ (𝜋, x ↦→ p) : Γ′, x : [Δ′ ⊢m A] { Π1,Π2

Typing rules of substitution patterns are generalized from the substitution typing rules. When the

entry is a regular variable (rule P-S-Var), we ensure that the variable exists in either Γ or Δ and

produce no pattern variables. For entries that are patterns (rule P-S-Pattern), we type-check the

pattern and collect the pattern variables it produces.

6.3 Pattern Matching
Matching is defined by the following rules as partial functions. Note that match(p; e) is defined
up to α-equivalence on e: we allow renaming of bound variables in e to match the pattern p. For
contexts introduced by 𝜆Δ, letΔ, or if letΔ, only renaming is allowed but not reordering. These

align with the De Bruijn representation used in the formalization. We present a selection of rules,

with the complete definition available in section B.3. Notably, we support matching on the full

expression syntax, including quotations, if-let and rewrite.

match(p; e) (Expression Matching (excerpt))

match(x̂ : A; e) ≔ x ↦→ e

match(x𝜎 ; x𝜎) ≔ ·
match(x𝜋 ; x𝜎) ≔ match(𝜋 ;𝜎)

match((𝜆Δx : A. p); (𝜆Δx : A. e)) ≔ match(p; e)
match(p1 p2; e1 e2) ≔ match(p1; e1),match(p2; e2)

match(𝜋 ;𝜎) (Substitution Matching)

match(·; ·) ≔ ·
match(𝜋, x ↦→ y;𝜎, x ↦→ y) ≔ match(𝜋 ;𝜎)
match(𝜋, x ↦→ p;𝜎, x ↦→ e) ≔ match(𝜋 ;𝜎),match(p; e)

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#_%E2%88%A3_%E2%8A%A9_%E2%86%9D_
https://tsung-ju.org/masters-thesis/agda/Pat.Matching.html#match
https://tsung-ju.org/masters-thesis/agda/Pat.Matching.html#matchSubst

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Tsung-Ju Chiang

The match functions preserves typing in the following way:

• If Γ;Δ ⊢n p : A { Π and Γ,Δ ⊢n e : A, and match(p; e) is defined, then Γ ⊢ match(p; e) : Π.
• If Γ;Δ ⊢ 𝜋 : Γ′ { Π and Γ,Δ ⊢ 𝜎 : Γ′, andmatch(𝜋 ;𝜎) is defined, then Γ ⊢ match(𝜋 ;𝜎) : Π.

6.4 Rewriting
Rewriting builds on the matching function by applying it to sub-expressions in the target expression,

replacing those that match the given pattern with a specified replacement expression. Given a

pattern Γ; · ⊢n p : A { Π, replacement expression Γ,Π ⊢n e1 : A, and target expression Γ ⊢n e2 : B,
The meta-level function rewrite(p; e1; e2) is defined as follows, producing an expression with the

same type as e2:

rewrite(p; e1; e2) (Rewriting)

rewrite(p; e1; e2) =
{
e1 [idΓ, 𝜎] if A = B and match(p; e2) = 𝜎 ,

rewriteSubterms(p; e1; e2) otherwise.

where rewriteSubterms(p; e1; e2) applies rewrite to immediate sub-expressions of e2.
The above definition rewrites all top-most occurrences of p in e2 with e1. Other strategies, such

as rewriting all occurrences from bottom to top, can also be defined:

rewriteBottomUp (p; e1; e2) = let e′
2
= rewriteSubtermsBottomUp (p; e1; e2)

in

{
e1 [idΓ, 𝜎] if A = B and match(p; e′

2
) = 𝜎 ,

e′
2

otherwise.

6.5 Substitution and Reduction
Substitution and evaluation contexts are straightforward extensions of those in 𝜆○▷.

Evaluation contexts (excerpt) E F . . . | if letΔ⟨p⟩ = E then e2 else e3
| rewrite ⟨p1⟩ as E in e2 | rewrite ⟨p1⟩ as v1 in E

The reduction rules for if-let and rewrite expressions are defined as follows, which rely on the

meta-level functions match and rewrite, respectively.

Γ ⊢n e1 −→ e2 (Reduction (excerpt))

IfLetQuote1

match(p; e1) = 𝜎

Γ ⊢n if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→𝛽 e2 [idΓ, 𝜎]

IfLetQuote2

match(p; e1) undefined
Γ ⊢n if letΔ⟨p⟩ = ⟨e1⟩ then e2 else e3 −→𝛽 e3

RewriteQuoteQuote

Γ ⊢n rewrite ⟨p⟩ as ⟨e1⟩ in ⟨e2⟩ −→𝛽 ⟨rewrite(p; e1; e2)⟩

The progress and preservation theorems extends to 𝜆○▷
pat

as well.

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Rewriting.html#rewrit%C8%A9
https://tsung-ju.org/masters-thesis/agda/Pat.Reduction.html#_-%E2%86%92_

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Typed Meta-Programming with Splice Variables 21

7 Denotational Semantics
We define a Kripke-style model [Asai et al. 2014; Mitchell and Moggi 1991] for 𝜆○▷ and 𝜆○▷

pat
, where

level-𝑛 types are interpreted as sets indexed by later-stage contexts Γn+1, and level-𝑛 function types

are interpreted as functions indexed by later-stage substitutions Γ′ ⊢ 𝜎 : Γ.
We write Γ ⊢n A for the set of typed expressions, and Γ′ ⊢ Γ for the set of typed substitutions.

(Γ ⊢n A) ≔ {e | Γ ⊢n e : A} (Γ′ ⊢ Γ) ≔ {𝜎 | Γ′ ⊢ 𝜎 : Γ}

7.1 Type Interpretation
Types at level 𝑛 are interpreted as sets indexed by later-stage contexts Γn+1.

LAn MΓ (Type Interpretation)

L [Δ ⊢ A] → B MΓ ≔ ∀Γ′n+1 . (Γ′ ⊢ Γ → LA MΓ′,Δ → LB MΓ′)
LΔ ▷A MΓ ≔ LA MΓ,Δ
L bool MΓ ≔ {True, False}
L ○A MΓ ≔ Γ ⊢n+1 A

Function types are interpreted as dependent functions, which take a later-stage substitution from

Γ to Γ′, an element in LA MΓ′,Δ, and return an element in LB MΓ′ . This definition ensures that we

can apply a later-stage substitution Γ′ ⊢ 𝜎 : Γ to the interpretation of a function type. Δ ▷A is

interpreted as the interpretation of A under the extended context Γ,Δ. bool is interpreted as the set
of booleans. ○A is interpreted as level-𝑛 + 1 expressions of type A under the context Γ.

Given a type An
, an element d ∈ LA MΓ , and a later-stage substitution Γ′ ⊢ 𝜎 : Γ, 𝑑A [𝜎] ∈ LA MΓ′

is the result of applying 𝜎 to d, which is defined recursively on the type A as follows:

𝑑𝐴 [𝜎] (Element Substitution)

𝑓 A→B [𝜎] ≔ 𝜆𝜎 ′ 𝑑. 𝑓 (𝜎 [𝜎 ′]) 𝑑
𝑑Δ▷A [𝜎] ≔ 𝑑A [𝜎, idΔ]
𝑏bool [𝜎] ≔ 𝑏

𝑒○A [𝜎] ≔ 𝑒 [𝜎]
For brevity, we write 𝑑 [𝜎] when the type A is clear from the context.

7.2 Context Interpretation
Typing contexts at level 𝑛 are interpreted as the product of the interpretations of their entries, where

each entry is interpreted differently depending on whether it’s at the current stage 𝑛. Current-stage

entries Γ ∋ x : [Δ ⊢n A] are interpreted as substitution-indexed functions from LΔ M to LA M, while
later-stage entries Γ ∋ x : [Δ ⊢m A] with𝑚 > 𝑛 are interpreted as syntactic substitution entries

Γ′ ⊢ x : [Δ ⊢m A], which can either be a variable x ↦→ y or an expression x ↦→ e.

L Γ MΓ′ (Context Interpretation (Environments))

L Γn MΓ′ ≔
∏

Γ∋x:[Δ⊢mA]

{
∀Γ′′n+1. (Γ′′ ⊢ Γ′ → LΔ MΓ′′ → LA MΓ′′) if𝑚 = 𝑛,

Γ′ ⊢ x : [Δ ⊢m A] if𝑚 > 𝑛.

We write 𝜌 to denote an element in L Γ MΓ′ which we call an environment. We write 𝜌 (𝑥) to denote the
entry corresponding to 𝑥 in 𝜌 . Entries with level𝑚 > 𝑛 can in an environment 𝜌 can be combined

into a later-stage substitution, which we denote as 𝜌↾𝑛+1. Applying a later-stage substitution

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Denotational.html#%E2%9F%A6_%E2%9F%A7
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Denotational.html#subst%E2%9F%A6_%E2%9F%A7
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Denotational.html#G%E2%9F%A6_%E2%9F%A7

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Tsung-Ju Chiang

Γ′′ ⊢ 𝜎 : Γ′ to an environment 𝜌 ∈ L Γ MΓ′ is defined as follows, where the case for𝑚 = 𝑛 is defined

similarly to functions, and the case for𝑚 > 𝑛 is handled by substituting the substitution entry.

𝜌 [𝜎] (Environment Substitution)

𝜌 [𝜎] (𝑥) ≔
{
𝜆𝜎 ′ .𝜌 (𝑥) (𝜎 [𝜎 ′]) if𝑚 = 𝑛,

𝜌 (𝑥) [𝜎] if𝑚 > 𝑛,
for each Γ ∋ x : [Δ ⊢m A].

An element 𝑑 ∈ LA MΓ,Δ can be lifted to a singleton environment {x𝑛 ↦→ 𝑑} ∈ L x : [Δ ⊢n A] MΓ ,
which is defined as:

{x𝑛 ↦→ 𝑑} (Singleton Environments)

{x𝑛 ↦→ 𝑑} ≔ 𝜆𝜎 ′ . 𝑑 [𝜎 ′, 𝜌↾𝑛+1]

We write 𝜌 ∪ 𝜌 ′ to add entries to an environment, where 𝜌 ′ can either be an environment or a

later-stage substitution.

7.3 Expression Interpretation
Given any later-stage context Γ′, expressions Γ ⊢n e : A are interpreted as functions L Γ MΓ′ → LA MΓ′ ,
and substitutions Γ ⊢ 𝜎 : Δ are interpreted as functions L Γ MΓ′ → LΔ MΓ′ .

L e MΓ′ (Expression Interpretation)

L x𝜎1 MΓ′ 𝜌 ≔ 𝜌 (𝑥) idΓ′ L𝜎1 MΓ′

L true MΓ′ 𝜌 ≔ True

L false MΓ′ 𝜌 ≔ False

L if e1 then e2 else e3 MΓ′ 𝜌 ≔

{
L e2 MΓ′ 𝜌 if L e1 MΓ′ 𝜌 = True
L e3 MΓ′ 𝜌 if L e1 MΓ′ 𝜌 = False

L 𝜆Δx : A. e MΓ′ 𝜌 ≔ 𝜆𝜎 ′ 𝑑. L e MΓ′ (𝜌 [𝜎 ′] ∪ {x𝑛 ↦→ 𝑑})
L e1 e2 MΓ′ 𝜌 ≔ L e1 MΓ′ 𝜌 idΓ′ (L e2 MΓ′ (𝜌 ∪ idΔ))
L ⟨e⟩ MΓ′ 𝜌 ≔ e[𝜌↾𝑛+1]

L let ⟨Δ. x⟩ = e1 in e2 MΓ′ 𝜌 ≔ let e = L e1 MΓ′ (𝜌 ∪ idΔ) in L e2 MΓ′ (𝜌 ∪ (x ↦→ e))
LwrapΔe MΓ′ 𝜌 ≔ L e MΓ′ (𝜌 ∪ idΔ)

L letwrapΔ x : A = e1 in e2 MΓ′ 𝜌 ≔ let 𝑑 = L e1 MΓ′ 𝜌 in L e2 MΓ′ (𝜌 ∪ {x𝑛 ↦→ 𝑑})

For 𝜆○▷
pat
, the additional expression forms are interpreted as follows:

L if letΔ⟨p⟩ = e1 then e2 else e3 MΓ′ 𝜌 ≔

let e = L e1 MΓ′ (𝜌 ∪ idΔ) in
{
L e2 MΓ′ (𝜌 ∪ 𝜎) if match(p; e) = 𝜎 ,

L e3 MΓ′ 𝜌 otherwise.

L rewrite ⟨p1⟩ as e1 in e2 MΓ′ 𝜌 ≔

rewrite(p1 [𝜌↾𝑛+1]; L e1 MΓ′ (𝜌 ∪ idΠ); L e2 MΓ′ 𝜌)

Interpretation of substitutions is defined as follows, where Γ ⊢ 𝜎 : Δ and 𝜌 ∈ L Γ MΓ′ :

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Denotational.html#substG
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Denotational.html#single%E2%9F%A6_%E2%9F%A7
https://tsung-ju.org/masters-thesis/agda/CtxTyp.Denotational.html#E%E2%9F%A6_%E2%9F%A7

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Typed Meta-Programming with Splice Variables 23

L𝜎 MΓ′ (Substitution Interpretation)

(
L𝜎 MΓ′ 𝜌

)
(𝑥) ≔

𝜆𝜎 ′ 𝜌 ′ . L e MΓ′ (𝜌 [𝜎 ′] ∪ 𝜌 ′) if𝑚 = 𝑛 and 𝜎 (x) = e,
𝜌 (y) if𝑚 = 𝑛 and 𝜎 (x) = y,
𝜎1 (𝑥) [𝜌↾𝑛+1] if𝑚 > 𝑛,

for each Γ ∋ x : [Δ′ ⊢m A].

For the current-stage entries Γ ∋ x : [Δ′ ⊢n A], we want to interpret 𝜎 (x) under 𝜌 and 𝜌 ′,
which interprets Γ and Δ′ respectively. If 𝜎1 (x) is an expression Γ,Δ′ ⊢n e : A, we interpret e
using the concatenation of the two environments. Otherwise, if 𝜎 (x) is a variable y, then its

interpretation already exists in the environment 𝜌 , so we simply look it up. For the later-stage

entries Γ ∋ x : [Δ′ ⊢m A] with𝑚 > 𝑛, we apply the later-stage part of the environment 𝜌 to the

substitution entry, which ensures (L𝜎 MΓ′ 𝜌)↾𝑛+1 = (𝜎↾n+1) [𝜌↾𝑛+1].

7.4 Relation to Operational Semantics
The denotational semantics, compared to the operational semantics described in section 4, is

more compositional and guarantees termination by construction. It provides an alternative way to

evaluate expressions that is reduction-free and always terminates, by running e under the identity
environment idΓ when Γ is at level 𝑛 + 1. We expect the two semantics to be equivalent, but this

has not been formally proven. Proving adequacy of the denotational semantics with respect to the

operational semantics involves a logical relation argument, which would also establish termination

for the operational semantics.

7.5 Categorification
Categorically, the model is close to a presheaf model [Kavvos 2024] over the category of later-stage

substitutions. Refining it into a presheaf model would require proving that all operations commute

with substitution, such as 𝑑 [𝜎] [𝜎 ′] = 𝑑 [𝜎 [𝜎 ′]] for elements. We expect this to be true for the core

calculus 𝜆○▷, though it has not been formally proven. For 𝜆○▷
pat
, this depends on the definition of

match and rewrite. These refinements are left for future work.

8 Discussion
We discuss some of the design choices of our calculi and their implications.

8.1 Explicit Staging of Types
In our calculus, every type 𝐴 has a fixed stage level, This has the advantage of making staging

explicit and allows different stages to have different set of types. However, it makes types such as

A→ ○A impossible to express. One way to address this is to introduce a lifting operator on types

and contexts, which converts a type or context from stage 𝑛 to stage 𝑛 + 1, such as follows:

(bool)+ = bool

([Δ ⊢ A] → B)+ = [Δ+ ⊢ A+] → B+

(○A)+ = ○(A+)
(Δ ▷A)+ = (Δ+) ▷ (A+)

(·)+ = ·
(Γ, x : [Δ ⊢m A])+ = Γ+, x : [Δ+ ⊢m+1 A+]

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/CtxTyp.Denotational.html#S%E2%9F%A6_%E2%9F%A7

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Tsung-Ju Chiang

Then, we can express types such as A→ ○(A+). Alternatively, we can make staging of every Δ in

a type relative, then we recover the ability to use A at different stages, but at the cost of making

staging implicit and assuming uniformity of types across stages.

8.2 Multistage Dependencies
Multistage dependencies correspond to nested splices in the quasi-quoting syntax. For example,

consider the following expression:

⟨𝜆x1. ⟨𝜆x2. $($(e0))⟩⟩

where x1 is a stage-1 variable, x2 is a stage-2 variable, and e0 is a stage-0 expression that depends

on x1 and x2. The expression is equivalent to

letΔ⟨y1 : C⟩ = e0 in ⟨𝜆x1 . letx2:B2 ⟨y2 : C⟩ = y1idΔ in ⟨𝜆x2. y2x2 ↦→x2⟩⟩

in our calculus, where Δ = (x1 : A1, x2 : B2) is a multistage dependency context.

8.3 Let-splice vs. Splice
Our calculi use the let ⟨x : A⟩ = e1 in e2 syntax instead of the traditional in-place splicing syntax

$(e). As discussed in section 1, the let-splice syntax makes the evaluation order explicit and allows

finer control. It also naturally extends to the pattern matching syntax if let ⟨p⟩ = ⟨e1⟩ then e2 else e3.
However, let-splice syntax can be more verbose in simple cases compared to the traditional splice

syntax. We believe the traditional splice syntax could be added to our calculi, at least as syntactic

sugar translated into let-splice through a lifting transformation similar to the one in [Xie et al.

2022]. Extending the type system to support both syntaxes is left for future work.

8.4 Unhygienic Function and Value Types
In our core calculus, we included an unhygienic function type [Δ ⊢ A] → B and an unhygienic

value type Δ ▷A. The two types are interconvertible via the following functions:

wrapToArr : (Δ ▷A→ B) → ([Δ ⊢ A] → B)
wrapToArr ≔ 𝜆f . 𝜆Δx : A. f (wrapΔxidΔ)
arrToWrap : ([Δ ⊢ A] → B) → (Δ ▷A→ B)
arrToWrap ≔ 𝜆f . 𝜆x : (Δ ▷A). f (letwrapΔ y : A = x in yidΔ)

The unhygienic function type is useful for expressing unhygienic macros, since it does not require

explicit wrapping and unwrapping. On the other hand, the unhygienic value type allows unhygienic

values to be used as a first-class citizen in the language and be stored in data structures. Without it,

we can only annotate unhygienic dependencies on variables and definitions, but not on values. For

example, (Δ ▷A) × (Δ′ ▷B) would not be possible without the unhygienic value type.

8.5 Code Pattern Matching and Confluence
We note that 𝜆○▷

pat
is not confluent if we were to allow reducing under let-bindings. For example,

consider the following expression:

let ⟨x : bool⟩ = ⟨true⟩ in (if let ⟨true⟩ = ⟨x⟩ then 1 else 0)

If the outer let-binding reduces first, we get if let ⟨true⟩ = ⟨true⟩ then 1 else 0 which reduces to 1.

If the inner if-let reduces first, the pattern match fails, and we get let ⟨x : bool⟩ = ⟨true⟩ in 0 , which
reduces to 0. This is partly due to our mixed treatment of meta-variables and quoted variables, so

we cannot distinguish between the two in the pattern match.

, Vol. 1, No. 1, Article . Publication date: January 2025.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Typed Meta-Programming with Splice Variables 25

8.6 Substitution Patterns
As mentioned in section 6.2, we only allow using substitution patterns with variables that are

introduced locally to avoid breaking linearity of patterns variables under substitution. Allowing

substitution patterns with non-local variables however, seems to allow patterns to be programmed

using substitution. For example, consider the pattern ⟨xy ↦→ẑ:int⟩. Substituting x with y + 2 or y + y
would produce ⟨ẑ : int + 2⟩ or ⟨ẑ : int + ẑ : int⟩ respectively, which seems to be a useful feature as

long as we can ensure y is used at least once in the pattern. This would involve integrating linearity

into our type system, which could be a possible direction for future work.

9 Formalization
We formalize the syntax, typing rules, operational semantics, safety properties, and translation of

our calculi in Agda. Our formalization relies on the agda-stdlib library [The Agda Community

2024] and follows the style of Programming Language Foundations in Agda [Wadler et al. 2022]. It is

structured in the following way:

• Everything : Imports all modules and serves as an index.

• Data.StagedList and Data.StagedTree : Define intrinsically well-staged lists and rose

trees, respectively. They are developed in a self-contained and reusable manner, so they can

be used in other projects that require well-staged data structures. In our formalization, they

are used to represent the nested structure of our typing context.

• Core.* , CtxArr2.* , CtxTyp.* , and Pat.* : Formalizes different variants of our calculi.

The Core.* modules define a minimal calculus with only the ○ modality; the CtxArr2.*

modules define a calculus with the unhygienic function type but without the unhygienic

value type; the CtxTyp.* modules formalize 𝜆○▷ in full; the Pat.* modules formalize 𝜆○▷
pat

.

Each of them contains the following submodules:

– Context : Defines types and typing contexts.

– Term : Defines intrinsically typed terms using de Bruijn indices.

– Depth : Defines the depth of contexts and substitutions.

– Substitution : Defines substitution.

– Reduction : Defines the operational semantics and proves safety properties.

– Examples : Contains examples of typable terms in the calculus and their evaluation

results.

– Denotational : Defines the Kripke-style denotational semantics.

Additionally, the Pat modules contain the following submodules:

– Context.Equality , Term.Equality : Defines decidable equality for contexts and terms.

– Matching : Defines the pattern matching function.

– Rewrite : Defines the rewrite function.

• Splice.* : Formalizes the translation from 𝜆○▷ to 𝜆○ . It contains the following submodules:

– Context , Term : Defines types and terms in 𝜆○ .

– Translation : Defines the translation function.

All modules are checked with the safe flag to ensure soundness. Most are also checked with

without-K , except for the Pat modules where we use K to simplify the proofs of decidable equality.

There are a few differences between the formalization and the presentation in this paper: in the

formalization, all contexts and types are intrinsically well-staged, and all expressions are intrinsically

typed. Variables are represented namelessly using de Bruijn indices. These simplifications make

the formalization more concise and ensure that pattern matching respects α-equivalence.

, Vol. 1, No. 1, Article . Publication date: January 2025.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Tsung-Ju Chiang

10 Related Work
We compare our calculus with related work. Table 2 compares the syntax, type system, and features

of our calculus with similar calculi.

𝜆○▷, 𝜆○▷
pat

𝜆○ 𝐹 ⟦⟧ (Haskell) Mœbius 𝜆▲ (Scala 3) 𝜆{} (Squid)

Quoting ⟨·⟩ next ⟦·⟧ box ⌈·⌉ ⌈·⌉
Unquoting let ⟨·⟩ prev $(·) let box ⌊·⌋ ⌊·⌋
Code Type ○ ○ Code ⌈Φ ⊢𝑘 ·⌉ ⌈·⌉ Code𝑇 𝐶

Contextual Yes – – Yes – Yes

Nested Yes No 1 level Yes No No

Polymorphism No No Yes Yes No Subtyping

Analytic Macros Yes – – Yes Yes Yes

Rewrite Yes – – – – Yes

Table 2. Comparison of our calculus with related work

10.1 Typed Template Haskell
Our calculus is directly inspired by the 𝐹 ⟦⟧ core calculus of Typed Template Haskell [Xie et al.

2022]. Below, we discuss the relationship between 𝐹 ⟦⟧ and our calculus.

In 𝐹 ⟦⟧, let-splice bindings appear in the form of ⟦𝑒⟧𝜙 , where 𝑒 is a quoted expression and 𝜙 is a

list of let-splice bindings. This is similar to tying the let-splice bindings to the quote construct in

our calculus. Since 𝐹 ⟦⟧ is intended as a translation target for a quote-and-splice language and all

let-splice bindings are lifted during translation, this design choice is natural. In our calculus, we

allow let-splice bindings to appear separately from the quote construct, allowing them to be used

more flexibly.

Another difference is that 𝐹 ⟦⟧ context only allows a single level of nesting. Again, this is a natural
choice for a translation target for a quote-and-splice language, since the context only needs to track

the variable dependencies that are captured by splices. In our calculus, we allow arbitrary nested

contexts to support more complex macro signatures and dependency relations. This makes our

calculus more expressive but also more complex to reason about. Also, as discussed in section 4.2,

it also requires us to introduce delayed substitutions to ensure progress.

We expect the convenience of simply capturing dependencies from the context can be recovered

in the surface syntax by automatically generating identity substitutions for the unspecified depen-

dencies. This way, the user can write the code in a more concise way while still having the full

power of the calculus.

10.2 S4
In addition to the temporal logic approach, another logic that has been used in the context of

meta-programming is the S4 modal logic [Pfenning and Davies 2001], which can be axiomatized as

follows:

Axioms
• any intuitionistic tautology instance

• K : □(A→ B) → □A→ □B
• T : □A→ A
• 4 : □A→ □(□A)

Rules
• If A→ B and A, then B.

, Vol. 1, No. 1, Article . Publication date: January 2025.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Typed Meta-Programming with Splice Variables 27

• If A, then □A.

When interpreted as a type system, the box modality □A models closed code expressions that do not

depend on the surrounding context, in contrast to the temporal ○A which allows code to reference

variables in the surrounding context. The T axiom corresponds to evaluation of closed expressions,

and 4 corresponds to self-quoting.

The relationship between 𝜆○ , 𝐹 ⟦⟧, and 𝜆○▷ mirrors the different derivation systems of the intu-

itionistic S4 logic. 𝜆○ corresponds to Pfenning and Davies’s implicit system which uses quote and

unquote operators similar to quasi-quotes, 𝐹 ⟦⟧ corresponds to the style of [Bierman and de Paiva

2000] which pairs an explicit substitution with the quote constructor, and 𝜆○▷ corresponds to

Pfenning and Davies’s implicit system which uses let-bindings for unquoting. In literature, the

implicit system is sometimes called Kripke-style or Fitch-style [Clouston 2018; Murase 2017; Murase

et al. 2023], while the explicit system is sometimes called the dual-context style [Kavvos 2020;

Nanevski et al. 2008].

10.3 Contextual Modal Type Theory and Mœbius
Contextual modal type theory (CMTT) [Nanevski et al. 2008] extends the S4 approach with contextual
modalities, which generalizes the □ type to allow code to depend on a specified context, representing

open code expressions. Mœbius [Boespflug and Pientka 2011; Jang et al. 2022] further extends

CMTT into multiple levels, modeling meta
𝑛
-variables in multi-stage programming. Our type system

is highly inspired by Mœbius. While the two systems are based on different logical foundations

and have different approaches to context tracking, some aspects, such as typing rules for delayed

substitutions, are strikingly similar. Here, we outline the key differences between our system and

Mœbius.

Logical foundation Our system is based on temporal logic, while Mœbius is gereralized

from S4.

Separation of modalities We separate the code modality ○ and the contextual modality

Δ ▷ , while Mœbius combines them into a single modality ⌈Φ ⊢𝑘 ·⌉.
Treatment of meta-variables In our system, meta-variables and program variables are both

treated as variables at the next level. In Mœbius, meta-variables are treated separately from

program variables.

In Mœbius and CMTT, the code type ⌈Φ ⊢𝑘 𝐴⌉ explicitly declares all variables that the code may

refer to. This design makes code evaluation possible because a code of type ⌈· ⊢𝑘 𝐴⌉ is guaranteed
to contain no free variables.

In contrast, the temporal code type ○A allows code to reference any later-stage variables in the

surrounding context without explicit declaring them. For instance, a macro 𝑓 : ○int→ ○int can
be used as 𝜆x : int. $(f ⟨x + 1⟩) , where the variable x is introduced at the use site and not known

to the macro’s definition.

Our calculus build on this by taking an additive approach to context tracking, where a value

of type Δ ▷A can use variables in Δ in addition to those in the surrounding context. This allows

depdencies that does not follow lexical scoping to be specified, which is essential for expressing

unhygienic macros. Moreover, it enhances the expressiveness of the type system by allowing context

specifications to be mixed with other type constructors. For instance, (x : bool1) ▷ (A × ○B) could
represent an unhygienic value of type A paired with a code of type B that both use a variable x.

10.3.1 Extending 𝜆○▷ with S4-style code types. To extend our calculus with the ability to restrict

contexts, we can add a third modal type □A which restricts the context to be empty. Semantically,

, Vol. 1, No. 1, Article . Publication date: January 2025.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Tsung-Ju Chiang

it can be interpreted as

L□A MΓ ≔ LA M· ← the empty context

Using this, the S4 code type can be expressed as □○A, which prcisely represents closed code

expressions that does not depend on the surrounding context Γ.

L□○A MΓ = · ⊢n+1 A

Code expressions which do not depend on the surrounding context can be shifted [Xie et al. 2023]

across levels by adjusting the level annotaions. Therefore, □○A+ → A can be implemented by

shifting the input expression down by one level and then evaluating it, where A+ adds 1 to all level

annotations in A as defined in section 8.1. Similarly, □○A→ □○(□○A+) can be implemented by

shifting the input expression up by one level and then quoting it. These properties suggests that

□○A indeed satisfies the S4 axioms. Developing a full λ-calculus with this extension would require

a more sophisticated type system to handle the interaction between □ and ○, which is left for future

work. The Mœbius contextual type ⌈Φ ⊢𝑘 𝐴⌉ is similar to □(Φ▷○A) in this setting. However, there

are some differences in how the levels are managed, since they carry different meanings in the

two systems. In Mœbius, Φ contains variables with levels smaller than 𝑘 , while in our system the

context contains variables with levels greater than 𝑛.

10.4 Polymorphic Contexts
Murase et al. observed that 𝜆○ types can be embedded into a contextual modal type theory extended

with polymorphic contexts [Murase et al. 2023]. This is similar to viewing the type interpretation

function LA MΓ from section 7 as a syntactic translation into CMTT types, where the ∀Γ quantifi-

cation is replaced by ∀𝛾 , an abstraction over context variables, and the ○ type is translated into

CMTT code type under the given context. That is:

L [Δ ⊢ A] → B MΓ ≔ ∀𝛾 . (𝛾 ⊢ Γ) → LA M𝛾,Δ → LB M𝛾 (𝛾 fresh)
L ○A MΓ ≔ ⌈Γ ⊢ 𝐴⌉

where 𝛾 is a polymorphic context variable, and Γ may include such variables. This is another

promising direction for integrating our calculus with contextual modal type theory.

10.5 Nested Sequents
The nested context design in our calculus is similar to nested sequents [Guenot 2013], which has

been studied in the context of explicit substitutions and deep inference. Our type system extends

this idea by adding stage levels for bind-time tracking, while using a shallow inference system to

keep the expression syntax close to the λ-calculus.

10.6 Multimodal Type Theory
Multimodal Type Theory [Gratzer et al. 2020; Kavvos and Gratzer 2023] provides a general framework

for combining multiple modal types in a single type system. 𝜆○▷ can be seen as a multimodal type

system with modalities ○ and Δ ▷ for each context Δ. Several aspects of our type system, such as

having a modal function type and using let-bindings to integrate multiple modalities, also appear

in multimodal type theory. The main difference is that multimodal type theory uses Fitch-style

syntactical locks � to control variable usage, while our calculus modifies the context directly using

the restriction operator (Γ↾n+1) and extension (Γ,Δ). Specifying our calculus as a multimodal system

would be an interesting direction for future work.

, Vol. 1, No. 1, Article . Publication date: January 2025.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Typed Meta-Programming with Splice Variables 29

10.7 𝜆▲

Our treatment of analytic macros is similar to that of 𝜆▲ [Stucki et al. 2021]. In 𝜆▲ , the typing

context is not nested, so whenmatching a term under a lambda, the result must be first “η-expanded”

into a function that takes the code of the dependencies as arguments. For example, in our language,

the pattern variable 𝑥 in ⟨𝜆y : A. x̂ : B⟩ has type x : [y : A1 ⊢1 B], whereas in 𝜆▲ it would have

type ○A→ ○B. This design simplifies the type system, but as noted by Stucki et al., it only works

for a simpler two-stage settings and does not support matching on multi-staged meta-programs.

We extend 𝜆▲’s approach in two ways: First, the nested structure of our type system allows

us to directly type the match result as Γ ⊢ 𝜎 : Π, avoiding the need for η-expansion. Second, the

translation to 𝜆○ developed in section 5.1 generalizes 𝜆▲’s η-expansion technique to multi-stage

programs: For a match result with type Γ ⊢ 𝜎 : Π in our calculus, one can translate each item in 𝜎

using the expression translation function, resulting in a list of items with purely temporal type

⟦Π⟧ which can be directly typed in 𝜆▲ .

10.8 𝜆{} and Squid
The rewriting feature in our calculus is inspired by Squid [Parreaux et al. 2017], which is another

macro system for Scala with a different type system and feature set. While our type system is

quite different from Squid’s, the expression syntax for analytic macros is similar. Our if let ⟨p⟩ =
e1 then e2 else e3 is similar to writing e1 match ⌈𝑝⌉ ⇒ e2 else e3 in Squid, and rewrite ⟨p⟩ as e1 in e2
is similar to writing e2 rewrite ⌈𝑝⌉ ⇒ e1 in Squid.

11 Conclusion
Correctly tracking binding-time and variable dependencies is essential for the expressiveness

of a typed meta-programming language. We introduced a novel approach to this problem using

a nested context design combined with temporal-style staging. The approach flexibly supports

multiple meta-programming idioms, including explicit splice definition, unhygienic macros, and

code pattern matching. We also compared our approach with contextual modal type theory-based

systems in section 10, highlighting several potential directions for future work on integrating these

frameworks.

References
Kenichi Asai, Luminous Fennell, Peter Thiemann, and Yang Zhang. 2014. A type theoretic specification of partial evaluation.

In Proceedings of the 16th International Symposium on Principles and Practice of Declarative Programming. 57–68.
Eli Barzilay, Ryan Culpepper, and Matthew Flatt. 2011. Keeping it clean with syntax parameters. Proc. Wksp. Scheme and

Functional Programming (2011).

G. M. Bierman and V. C. V. de Paiva. 2000. On an Intuitionistic Modal Logic. Studia Logica 65, 3 (Aug. 2000), 383–416.
Mathieu Boespflug and Brigitte Pientka. 2011. Multi-level Contextual Type Theory. In Proceedings Sixth International

Workshop on Logical Frameworks and Meta-languages: Theory and Practice, LFMTP 2011, Nijmegen, The Netherlands,
August 26, 2011 (EPTCS, Vol. 71), Herman Geuvers and Gopalan Nadathur (Eds.). 29–43.

William Clinger. 1991. Hygienic macros through explicit renaming. ACM SIGPLAN Lisp Pointers 4, 4 (1991), 25–28.
Ranald Clouston. 2018. Fitch-style modal lambda calculi. In Foundations of Software Science and Computation Structures: 21st

International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018. Proceedings 21. Springer, 258–275.

Rowan Davies. 1996. A temporal-logic approach to binding-time analysis. In Proceedings 11th Annual IEEE Symposium on
Logic in Computer Science. IEEE, 184–195.

Steven E Ganz, Amr Sabry, and Walid Taha. 2001. Macros as multi-stage computations: Type-safe, generative, binding

macros in MacroML. ACM SIGPLAN Notices 36, 10 (2001), 74–85.
Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. In ACM

Conferences. Association for Computing Machinery, New York, NY, USA, 492–506.

Nicolas Guenot. 2013. Nested Deduction in Logical Foundations for Computation. Ph. D. Dissertation. Ecole Polytechnique X.

, Vol. 1, No. 1, Article . Publication date: January 2025.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Tsung-Ju Chiang

Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka. 2022. Mœbius: metaprogramming using contextual

types: the stage where system f can pattern match on itself. Proceedings of the ACM on Programming Languages 6, POPL
(Jan. 2022), 1–27.

Georgios Alexandros Kavvos. 2020. Dual-context calculi for modal logic. Logical Methods in Computer Science 16 (2020).
G. A. Kavvos. 2024. Two-Dimensional Kripke Semantics I: Presheaves. Schloss Dagstuhl – Leibniz-Zentrum für Informatik

(2024), 14:1–14:23. doi:10.4230/LIPIcs.FSCD.2024.14

G. A. Kavvos and Daniel Gratzer. 2023. UNDER LOCK AND KEY: A PROOF SYSTEM FOR AMULTIMODAL LOGIC. Bulletin
of Symbolic Logic 29, 2 (June 2023), 264–293.

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml. In Functional and Logic Programming, Michael

Codish and Eijiro Sumii (Eds.). Springer International Publishing, Cham, 86–102. doi:10.1007/978-3-319-07151-0_6

Kensuke Kojima and Atsushi Igarashi. 2011. Constructive linear-time temporal logic: Proof systems and Kripke semantics.

Information and Computation 209, 12 (Dec. 2011), 1491–1503.

John C. Mitchell and Eugenio Moggi. 1991. Kripke-style models for typed lambda calculus. Annals of Pure and Applied Logic
51, 1 (March 1991), 99–124.

Yuito Murase. 2017. Kripke-style contextual modal type theory. Work-in-progress report at Logical Frameworks and
Meta-Languages (2017).

Yuito Murase, Yuichi Nishiwaki, and Atsushi Igarashi. 2023. Contextual Modal Type Theory with Polymorphic Contexts. In

Programming Languages and Systems. Springer, Cham, Switzerland, 281–308. doi:10.1007/978-3-031-30044-8_11

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput. Logic
9, 3, Article 23 (June 2008), 49 pages. doi:10.1145/1352582.1352591

Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. 2017. Unifying analytic and statically-typed

quasiquotes. Proceedings of the ACM on Programming Languages 2, POPL (Dec. 2017), 1–33.

Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction of modal logic. Mathematical Structures in Computer
Science 11, 4 (Aug. 2001), 511–540.

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for Haskell. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). Association for Computing Machinery, New

York, NY, USA, 1–16. doi:10.1145/581690.581691

Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A practical unification of multi-stage programming and macros.

In Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences.
14–27.

Nicolas Stucki, Jonathan Immanuel Brachthäuser, and Martin Odersky. 2021. Multi-stage programming with generative and

analytical macros. In ACM Conferences. Association for Computing Machinery, New York, NY, USA, 110–122.

The Agda Community. 2024. Agda Standard Library. https://github.com/agda/agda-stdlib

Philip Wadler, Wen Kokke, and Jeremy G. Siek. 2022. Programming Language Foundations in Agda.
Ningning Xie, Matthew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang. 2022. Staging with class: a

specification for typed template Haskell. Proceedings of the ACM on Programming Languages 6, POPL (Jan. 2022), 1–30.

Ningning Xie, Leo White, Olivier Nicole, and Jeremy Yallop. 2023. MacoCaml: Staging Composable and Compilable Macros.

MacoCaml: Staging Composable and Compilable Macros (Artifact) 7, ICFP (Aug. 2023), 604–648. doi:10.1145/3607851

A 𝜆○▷ Details
A.1 Syntax

Variables x, y, z
Levels m, n ∈ N
Types A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A
Contexts Γ,Δ F · | Γ, x : [Δ ⊢n A]
Expressions e F x𝜎 | true | false | if e1 then e2 else e3

| 𝜆Δx : A. e | e1 e2 | ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2
| wrapΔe | letwrapΔ x : A = e1 in e2

Substitutions 𝜎 F · | 𝜎, x ↦→ y | 𝜎, x ↦→ e

Fig. 1. Syntax of 𝜆○▷

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.4230/LIPIcs.FSCD.2024.14
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-031-30044-8_11
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/581690.581691
https://github.com/agda/agda-stdlib
https://doi.org/10.1145/3607851

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Typed Meta-Programming with Splice Variables 31

B 𝜆○▷
pat

Details
B.1 Syntax

Variables x, y, z
Levels m, n ∈ N
Types A, B F bool | [Δ ⊢ A] → B | ○A | Δ ▷A
Contexts Γ,Δ,Π F · | Γ, x : [Δ ⊢n A]
Expressions e F x𝜎 | true | false | if e1 then e2 else e3

| 𝜆Δx : A. e | e1 e2 | ⟨e⟩ | letΔ⟨x : A⟩ = e1 in e2
| wrapΔe | letwrapΔ x : A = e1 in e2
| if letΔ⟨p⟩ = e1 then e2 else e3 | rewrite ⟨p⟩ as e1 in e2

Patterns p F x : A | x𝜋 | true | false | if p1 then p2 else p3
| 𝜆Δx : A. p | p1 p2 | ⟨p⟩ | letΔ⟨x : A⟩ = p1 in p2
| wrapΔp | letwrapΔ x : A = p1 in p2
| if letΔ⟨p⟩ = p1 then p2 else p3 | rewrite ⟨p⟩ as p1 in p2

Substitutions 𝜎 F · | 𝜎, x ↦→ y | 𝜎, x ↦→ e
Substitution Patterns 𝜋 F · | 𝜋, x ↦→ y | 𝜋, x ↦→ p

Fig. 2. Syntax of 𝜆○▷
pat

B.2 Typing Rules

Γ ⊢n e : A (Expression Typing)

VarSubst

Γ ∋ x : [Δ ⊢n A] Γ ⊢ 𝜎 : Δ

Γ ⊢n x𝜎 : A

True

Γ ⊢n true : bool

False

Γ ⊢n false : bool

If

Γ ⊢n e1 : bool Γ ⊢n e2 : A Γ ⊢n e3 : A
Γ ⊢n if e1 then e2 else e3 : A

CtxAbs

Γ, x : [Δn+1 ⊢n A] ⊢n e : B
Γ ⊢n 𝜆Δx : A. e : [Δ ⊢ A] → B

CtxApp

Γ ⊢n e1 : [Δn+1 ⊢ A] → B Γ,Δ ⊢n e2 : A
Γ ⊢n e1 e2 : B

Quote

Γ↾n+1 ⊢n+1 e : A
Γ ⊢n ⟨e⟩ : ○A

LetQuote

Γ,Δn+1 ⊢n e1 : ○A Γ, x : [Δ ⊢n+1 A] ⊢n e2 : B
Γ ⊢n letΔ⟨x : A⟩ = e1 in e2 : B

Wrap

Γ,Δn+1 ⊢n e : A
Γ ⊢n wrapΔe : Δ ▷A

LetWrap

Γ ⊢n e1 : Δ ▷A Γ, x : [Δ ⊢n A] ⊢n e2 : B
Γ ⊢n letwrapΔ x : A = e1 in e2 : B

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#Term

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Tsung-Ju Chiang

IfLet

Γ↾n+1;Δ
n+1 ⊢n+1 p : A { Πn+1 Γ,Δ ⊢n e1 : ○A Γ,Π ⊢n e2 : B Γ ⊢n e3 : B

Γ ⊢n if letΔ⟨p⟩ = e1 then e2 else e3 : B

Rewrite

Γ↾n+1; · ⊢n+1 p : A { Πn+1 Γ,Π ⊢n e1 : ○A Γ ⊢n e2 : ○B
Γ ⊢n rewrite ⟨p⟩ as e1 in e2 : B

Γ ⊢ 𝜎 : Γ′ (Substitution Typing)

S-Empty

Γ ⊢ · : ·

S-Rename

Γ ⊢ 𝜎 : Γ′ Γ ∋ y : [Δ ⊢m A]
Γ ⊢ (𝜎, x ↦→ y) : Γ′, x : [Δ ⊢m A]

S-Subst

Γ ⊢ 𝜎 : Γ′ Γ↾m,Δ ⊢m e : A

Γ ⊢ (𝜎, x ↦→ e) : Γ′, x : [Δ ⊢m A]

Γ;Δ ⊢n p : A { Π (Pattern Typing)

P-PVar

Γ;Δ ⊢n (x̂ : A) : A { x : [Δ ⊢n A]

P-VarSubst1

Γ ∋ x : [Δ′ ⊢n A] Γ,Δ ⊢ 𝜎 : Δ′

Γ;Δ ⊢n x𝜎 : A { ·

P-VarSubst2

Δ ∋ x : [Δ′ ⊢n A] Γ;Δ ⊢ 𝜋 : Δ′ { Π

Γ;Δ ⊢n x𝜋 : A { Π

P-If

Γ;Δ ⊢n p1 : bool { Π1 Γ;Δ ⊢n p2 : A { Π2 Γ;Δ ⊢n p3 : A { Π3

Γ;Δ ⊢n if p1 then p2 else p3 : A { Π1,Π2,Π3

P-True

Γ;Δ ⊢n true : bool { ·

P-False

Γ;Δ ⊢n false : bool { ·

P-CtxAbs

Γ;Δ, x : [Δ′n+1 ⊢n A] ⊢n p : B { Π

Γ;Δ ⊢n (𝜆Δ′x : A. p) : [Δ′ ⊢ A] → B { Π

P-CtxApp

Γ;Δ ⊢n p1 : [Δ′ ⊢ A] → B { Π1 Γ;Δ,Δ′ ⊢n p2 : A { Π2

Γ;Δ ⊢n p1 p2 : B { Π1,Π2

P-Quote

Γ↾n+1;Δ↾n+1 ⊢n+1 p : A { Πn+1

Γ;Δ ⊢n ⟨p⟩ : ○A { Π

P-LetQuote

Γ;Δ,Δ′ ⊢n p1 : ○A { Π1 Γ;Δ, x : [Δ′ ⊢n+1 A] ⊢n p2 : B { Π2

Γ;Δ ⊢n letΔ′ ⟨x : A⟩ = p1 in p2 : B { Π1,Π2

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#_%E2%8A%A9_
https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#Pattern

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Typed Meta-Programming with Splice Variables 33

P-Wrap

Γ;Δ,Δ′ ⊢n p : A { Π

Γ;Δ ⊢n wrapΔ′p : Δ′ ▷A { Π

P-LetWrap

Γ;Δ ⊢n p1 : Δ′ ▷A { Π1 Γ;Δ, x : [Δ′ ⊢n A] ⊢n p2 : B { Π2

Γ;Δ ⊢n letwrapΔ′ x : A = p1 in p2 : B { Π1,Π2

P-IfLet

(Γ,Δ)↾n+1;Δ′ ⊢n+1 p : A { Π
Γ;Δ,Δ′ ⊢n p1 : ○A { Π1 Γ;Δ,Π ⊢n p2 : B { Π2 Γ;Δ ⊢n p3 : B { Π3

Γ;Δ ⊢n if letΔ′ ⟨p⟩ = p1 then p2 else p3 : B { Π1,Π2,Π3

P-Rewrite

(Γ,Δ)↾n+1; · ⊢n+1 p : A { Π Γ;Δ,Π ⊢n p1 : ○A { Π1 Γ;Δ ⊢n p2 : B { Π2

Γ;Δ ⊢n rewrite ⟨p⟩ as p1 in p2 : B { Π1,Π2

Γ;Δ ⊢ 𝜋 : Γ′ { Π (Sustitution Pattern Typing)

P-S-Empty

Γ;Δ ⊢ · : · { ·

P-S-Var

Γ;Δ ⊢ 𝜋 : Γ′ { Π Γ,Δ ∋ y : [Δ′ ⊢m A]
Γ;Δ ⊢ (𝜋, x ↦→ y) : Γ′, x : [Δ′ ⊢m A] { Π

P-S-Pattern

Γ;Δ ⊢ 𝜋 : Γ′ { Π1 Γ↾m;Δ↾m,Δ
′m ⊢m p : A { Π2

Γ;Δ ⊢ (𝜋, x ↦→ p) : Γ′, x : [Δ′ ⊢m A] { Π1,Π2

B.3 Pattern Matching

match(p; e) (Expression Matching)

match(x̂ : A; e) ≔ x ↦→ e

match(x𝜎 ; x𝜎) ≔ ·
match(x𝜋 ; x𝜎) ≔ match(𝜋 ;𝜎)

match(true; true) ≔ ·
match(false; false) ≔ ·

match(if p1 then p2 else p3;
if e1 then e2 else e3) ≔ match(p1; e1),match(p2; e2),match(p3; e3)

match((𝜆Δx : A. p); (𝜆Δx : A. e)) ≔ match(p; e)
match(p1 p2; e1 e2) ≔ match(p1; e1),match(p2; e2)

match(⟨p⟩; ⟨e⟩) ≔ match(p; e)
match(letΔ⟨x : A⟩ = p1 in p2;

letΔ⟨x : A⟩ = e1 in e2) ≔ match(p1; e1),match(p2; e2)
match(wrapΔp;wrapΔe) ≔ match(p; e)

match(letwrapΔ x : A = p1 in p2;
letwrapΔ x : A = e1 in e2) ≔ match(p1; e1),match(p2; e2)

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Term.html#_%E2%88%A3_%E2%8A%A9_%E2%86%9D_
https://tsung-ju.org/masters-thesis/agda/Pat.Matching.html#match

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Tsung-Ju Chiang

match(if letΔ⟨p⟩ = p1 then p2 else p3;
if letΔ⟨p⟩ = e1 then e2 else e3) ≔ match(p1; e1),match(p2; e2),match(p3; e3)
match(rewrite ⟨p⟩ as p1 in p2;

rewrite ⟨p⟩ as e1 in e2) ≔ match(p1; e1),match(p2; e2)

match(𝜋 ;𝜎) (Substitution Matching)

match(·; ·) ≔ ·
match(𝜋, x ↦→ y;𝜎, x ↦→ y) ≔ match(𝜋 ;𝜎)
match(𝜋, x ↦→ p;𝜎, x ↦→ e) ≔ match(𝜋 ;𝜎),match(p; e)

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://tsung-ju.org/masters-thesis/agda/Pat.Matching.html#matchSubst

	Abstract
	1 Introduction
	2 Motivation and Examples
	2.1 Staged Power Function
	2.2 Reuse of Splice Variables
	2.3 Unhygienic Macros
	2.4 Pattern Matching on Code
	2.5 Code Rewriting

	3 Core Syntax and Typing
	3.1 Types and Typing Contexts
	3.2 Expressions
	3.3 Typing Rules

	4 Dynamics
	4.1 Substitution
	4.2 Reduction
	4.3 Example

	5 Translating between λ○▷, λ○, and CLTL
	5.1 λ○▷ to CLTL
	5.2 CLTL to λ○▷

	6 Analytic Macros
	6.1 Syntax
	6.2 Typing Rules
	6.3 Pattern Matching
	6.4 Rewriting
	6.5 Substitution and Reduction

	7 Denotational Semantics
	7.1 Type Interpretation
	7.2 Context Interpretation
	7.3 Expression Interpretation
	7.4 Relation to Operational Semantics
	7.5 Categorification

	8 Discussion
	8.1 Explicit Staging of Types
	8.2 Multistage Dependencies
	8.3 Let-splice vs. Splice
	8.4 Unhygienic Function and Value Types
	8.5 Code Pattern Matching and Confluence
	8.6 Substitution Patterns

	9 Formalization
	10 Related Work
	10.1 Typed Template Haskell
	10.2 S4
	10.3 Contextual Modal Type Theory and Mœbius
	10.4 Polymorphic Contexts
	10.5 Nested Sequents
	10.6 Multimodal Type Theory
	10.7 λ▲
	10.8 λ{} and Squid

	11 Conclusion
	References
	A λ○▷ Details
	A.1 Syntax

	B λ○▷pat Details
	B.1 Syntax
	B.2 Typing Rules
	B.3 Pattern Matching

